The Genetic Basis of Complex Traits

Rare Variants or “Common Gene, Common Disease”?
  • Sudha K. Iyengar
  • Robert C. Elston
Part of the Methods in Molecular Biology™ book series (MIMB, volume 376)

Abstract

The goal of the Human Genome Project and the subsequent HapMap Project was to accelerate the pace at which genes for complex human traits were discovered. Elated by the early successes from cloning disease genes for monogenic disorders, the architects of the projects reasoned that complex human diseases were tractable to positional cloning methods. However, a schism emerged in the field, with hot debates regarding two competing hypotheses being publicly waged. These opposing hypotheses pertained to the anticipated allelic spectrum and frequency of disease variants associated with common, complex disease. The common disease, common variant hypothesis (CD/CV) stated that a few common allelic variants could account for the genetic variance in disease susceptibility, whereas the rare variant (CD/RV) hypothesis stated that DNA sequence variation at any gene causing disease could encompass a wide range of possibilities, with the most extreme being that each mutation is only found once in the population. The practical consequence of the debate can be broken into two parts. If the CD/CV hypothesis is true, then application of the positional cloning paradigm to map disease genes would be eminently more feasible, as a common allele would be easier to locate. Conversely, if rare variants cause common disease, then identifying these genetic susceptibility variants would be challenging. Whether a disease is caused by rare or common alleles will have an impact on clinical applications, such as designing prognostic assays, or planning therapeutic interventions; fewer susceptibility alleles will simplify assay design, and the associated reduction in costs would amortize if a universally applicable therapy can be deployed. A current review of the literature suggests that both these hypotheses are correct, depending on the gene and disease examined. Although the controversial debate is revived with the identification of each new disease gene, the time has come to integrate both hypotheses in a manner that best explains biological variation in natural populations. The allelic spectrum of variation in a particular gene may be better explained by one of the two hypotheses but, for a multifactorial trait, a composite encompassing all influential genes needs to be constructed.

Key Words

DNA sequence variation allelic heterogeneity phenotypic complexity genetic architecture attributable risk 

References

  1. 1.
    McKusick-Nathans Institute for Genetic Medicine and Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information National Library of Medicine Bethesda MD. 2000 Online Mendelian Inheritance in Man.Google Scholar
  2. 2.
    Smith, D. J. and Lusis, A. J. (2002) The allelic structure of common disease. Hum. Mol. Genet. 11, 2455–2461.CrossRefPubMedGoogle Scholar
  3. 3.
    Corder, E. H., Saunders, A. M., Strittmatter, W. J., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.CrossRefPubMedGoogle Scholar
  4. 4.
    Roa, B. B., Boyd, A. A., Volcik, K., and Richards, C. S. (1996) Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat. Genet. 14, 185–187.CrossRefPubMedGoogle Scholar
  5. 5.
    Dunning, A. M., Chiano, M., Smith, N. R., et al. (1997) Common BRCA1 variants and susceptibility to breast and ovarian cancer in the general population. Hum. Mol. Genet. 6, 285–289.CrossRefPubMedGoogle Scholar
  6. 6.
    Altshuler, D., Hirschhorn, J. N., Klannemark, M., et al. (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Healey, C. S., Dunning, A. M., Teare, M. D., et al. (2000) A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability. Nat. Genet. 26, 362–364.CrossRefPubMedGoogle Scholar
  8. 8.
    Lander, E. S. (1996) The new genomics: global views of biology. Science 274, 536–539.CrossRefPubMedGoogle Scholar
  9. 9.
    Collins, F. S., Brooks, L. D., and Chakravarti, A. (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231.PubMedGoogle Scholar
  10. 10.
    Reich, D. E. and Lander, E. S. (2001) On the allelic spectrum of human disease. Trends Genet. 17, 502–510.CrossRefPubMedGoogle Scholar
  11. 11.
    Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefPubMedGoogle Scholar
  12. 12.
    Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.CrossRefPubMedGoogle Scholar
  13. 13.
    Haseman, J. K. and Elston, R. C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19.CrossRefPubMedGoogle Scholar
  14. 14.
    Schaid, D. J., Olson, J. M., Gauderman, W. J., and Elston, R. C. (2003) Regression models for linkage: issues of traits, covariates, heterogeneity, and interaction. Hum. Hered. 55, 86–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Schaid, D. J., Elston, R. C., Tran, L., and Wilson, A. F. (2000) Model-free sib-pair linkage analysis: combining full-sib and half-sib pairs. Genet. Epidemiol. 19, 30–51.CrossRefPubMedGoogle Scholar
  16. 16.
    The International HapMap Project. (2003) Nature 426, 789–796.CrossRefGoogle Scholar
  17. 17.
    International HapMap Consortium (2004) Integrating ethics and science in the International HapMap Project. Nat. Rev. Genet. 5, 467–475.CrossRefGoogle Scholar
  18. 18.
    Thorisson, G. A., Smith, A. V., Krishnan, L., and Stein, L. D. (2005) The International HapMap Project Web site. Genome Res. 15, 1592–1593.CrossRefPubMedGoogle Scholar
  19. 19.
    Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–1517.CrossRefPubMedGoogle Scholar
  20. 20.
    Terwilliger, J. D. and Weiss, K. M. (1998) Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotechnol. 9, 578–594.CrossRefPubMedGoogle Scholar
  21. 21.
    Terwilliger, J. D. and Hiekkalinna, T. (2006) An utter refutation of the ‘Fundamental Theorem of the HapMap’. Eur. J. Hum. Genet. 114, 426–437.CrossRefPubMedGoogle Scholar
  22. 22.
    Weiss, K. M. and Terwilliger, J. D. (2000) How many diseases does it take to map a gene with SNPs? Nat. Genet. 26, 151–157.CrossRefPubMedGoogle Scholar
  23. 23.
    Wright, A. F. and Hastie, N. D. (2001). Complex genetic diseases: controversy over the Croesus code. Genome Biol. 2, COMMENT2007.Google Scholar
  24. 24.
    Zondervan, K. T. and Cardon, L. R. (2004) The complex interplay among factors that influence allelic association. Nat. Rev. Genet. 5, 89–100.CrossRefPubMedGoogle Scholar
  25. 25.
    Doris, P. A. (2002) Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis. Hypertension 39, 323–331.CrossRefPubMedGoogle Scholar
  26. 26.
    Pritchard, J. K. (2001) Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 69, 124–137.CrossRefPubMedGoogle Scholar
  27. 27.
    Estivill, X., Bancells, C., and Ramos, C. (1997) Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium. Hum. Mutat. 10, 135–154.CrossRefPubMedGoogle Scholar
  28. 28.
    Morral, N., Bertranpetit, J., Estivill, X., et al. (1994) The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat. Genet. 7, 169–175.CrossRefPubMedGoogle Scholar
  29. 29.
    Castaldo, G., Tomaiuolo, R., Vanacore, B., et al. (2006) Phenotypic discordance in three siblings affected by atypical cystic fibrosis with the F508del/D614G genotype. J. Cyst. Fibros. Epub ahead of print.Google Scholar
  30. 30.
    Corvol, H., Flamant, C., Vallet, C., Clement, A., and Brouard, J. (2006) Modifier genes and cystic fibrosis. Arch. Pediatr. 13, 57–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Drumm, M. L., Konstan, M. W., Schluchter, M. D., et al. (2005) Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 353, 1443–1453.CrossRefPubMedGoogle Scholar
  32. 32.
    Bielsky, I. F., Hu, S. B., and Young, L. J. (2005) Sexual dimorphism in the vasopressin system: lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behav. Brain Res. 164, 132–136.CrossRefPubMedGoogle Scholar
  33. 33.
    Bontekoe, C. J., McIlwain, K. L., Nieuwenhuizen, I. M., et al. (2002) Knockout mouse model for Fxr2: a model for mental retardation. Hum. Mol. Genet. 11, 487–498.CrossRefPubMedGoogle Scholar
  34. 34.
    Fukamauchi, F., Wang, Y. J., Mataga, N., and Kusakabe, M. (1997) Paradoxical behavioral response to apomorphine in tenascin-gene knockout mouse. Eur. J. Pharmacol. 338, 7–10.CrossRefPubMedGoogle Scholar
  35. 35.
    Shi, W., Wang, X., Shih, D. M., Laubach, V. E., Navab, M., and Lusis, A. J. (2002) Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation 105, 2078–2082.CrossRefPubMedGoogle Scholar
  36. 36.
    Johnson, K. R., Zheng, Q. Y., and Noben-Trauth, K. (2006). Strain background effects and genetic modifiers of hearing in mice. Brain Res. 1091, 79–88.CrossRefPubMedGoogle Scholar
  37. 37.
    Seidelmann, S. B., De, L. C., Leibel, R. L., Breslow, J. L., Tall, A. R., and Welch, C. L. (2005) Quantitative trait locus mapping of genetic modifiers of metabolic syndrome and atherosclerosis in low-density lipoprotein receptor-deficient mice: identification of a locus for metabolic syndrome and increased atherosclerosis on chromosome 4. Arterioscler. Thromb. Vasc. Biol. 25, 204–210.PubMedGoogle Scholar
  38. 38.
    Rutherford, S. L. (2000) From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays 22, 1095–1105.CrossRefPubMedGoogle Scholar
  39. 39.
    Papin, J. A., Hunter, T., Palsson, B. O., and Subramaniam, S. (2005) Reconstruction of cellular signaling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6, 99–111.CrossRefPubMedGoogle Scholar
  40. 40.
    Song, Y., Niu, T., Manson, J. E., Kwiatkowski, D. J., and Liu, S. (2004) Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. Am. J. Hum. Genet. 74, 208–222.CrossRefPubMedGoogle Scholar
  41. 41.
    Horikawa, Y., Oda, N., Cox, N. J., et al. (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26, 163–175.CrossRefPubMedGoogle Scholar
  42. 42.
    Taillon-Miller, P., Saccone, S. F., Saccone, N. L., et al. (2004). Linkage disequilibrium maps constructed with common SNPs are useful for first-pass disease association screens. Genomics 84, 899–912.CrossRefPubMedGoogle Scholar
  43. 43.
    Clark, V. J., Cox, N. J., Hammond, M., Hanis, C. L., and Di, R. A. (2005) Haplotype structure and phylogenetic shadowing of a hypervariable region in the CAPN10 gene. Hum. Genet. 117, 258–266.CrossRefPubMedGoogle Scholar
  44. 44.
    Hayes, M. G., Del Bosque-Plata, L., Tsuchiya, T., Hanis, C. L., Bell, G. I., and Cox, N. J. (2005) Patterns of linkage disequilibrium in the type 2 diabetes gene calpain-10. Diabetes 54, 3573–3576.CrossRefPubMedGoogle Scholar
  45. 45.
    Cox, N. J., Hayes, M. G., Roe, C. A., Tsuchiya, T., and Bell, G. I. (2004) Linkage of calpain 10 to type 2 diabetes: the biological rationale. Diabetes 53, S19–S25.CrossRefPubMedGoogle Scholar
  46. 46.
    Weedon, M. N., Schwarz, P. E., Horikawa, Y., et al. (2003) Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am. J. Hum. Genet. 73, 1208–1212.CrossRefPubMedGoogle Scholar
  47. 47.
    Carlson, C. S., Aldred, S. F., Lee, P. K., et al. (2005) Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels. Am. J. Hum. Genet. 77, 64–77.CrossRefPubMedGoogle Scholar
  48. 48.
    Crawford, D. C., Akey, D. T., and Nickerson, D. A. (2005) The patterns of natural variation in human genes. Annu. Rev. Genomics Hum. Genet. 6, 287–312.CrossRefPubMedGoogle Scholar
  49. 49.
    Livingston, R. J., von Niederhausern N. A., Jegga, A. G., et al. (2004) Pattern of sequence variation across 213 environmental response genes. Genome Res. 14, 1821–1831.CrossRefPubMedGoogle Scholar
  50. 50.
    Crawford, D. C., Yi, Q., Smith, J. D., et al. (2006) Allelic spectrum of the natural variation in CRP. Hum. Genet. 119, 496–504.CrossRefPubMedGoogle Scholar
  51. 51.
    Cohen, J., Pertsemlidis, A., Kotowski, I. K., Graham, R., Garcia, C. K., and Hobbs, H. H. (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165.CrossRefPubMedGoogle Scholar
  52. 52.
    Cohen, J. C., Kiss, R. S., Pertsemlidis, A., Marcel, Y. L., McPherson, R., and Hobbs, H. H. (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872.CrossRefPubMedGoogle Scholar
  53. 53.
    Burzynski, G. M., Nolte, I. M., Bronda, A., et al. (2005) Identifying candidate Hirschsprung disease-associated RET variants. Am. J. Hum. Genet. 76, 850–858.CrossRefPubMedGoogle Scholar
  54. 54.
    Grice, E. A., Rochelle, E. S., Green, E. D., Chakravarti, A., and McCallion, A. S. (2005) Evaluation of the RET regulatory landscape reveals the biological relevance of a HSCR-implicated enhancer. Hum. Mol. Genet. 14, 3837–3845.CrossRefPubMedGoogle Scholar
  55. 55.
    Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A., and Contopoulos-Ioannidis, D. G. (2001) Replication validity of genetic association studies. Nat. Genet. 29, 306–309.CrossRefPubMedGoogle Scholar
  56. 56.
    Salanti, G., Sanderson, S., and Higgins, J. P. (2005) Obstacles and opportunities in meta-analysis of genetic association studies. Genet. Med. 7, 13–20.CrossRefPubMedGoogle Scholar
  57. 57.
    Whitcomb, D. C., Aoun, E., Vodovotz, Y., Clermont, G., and Barmada, M. M. (2005) Evaluating disorders with a complex genetics basis: the future roles of meta-analysis and systems biology. Dig. Dis. Sci. 50, 2195–2202.CrossRefPubMedGoogle Scholar
  58. 58.
    Marshall, C., Hitman, G. A., Partridge, C. J., et al. (2005) Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells. Mol. Endocrinol. 19, 213–224.CrossRefPubMedGoogle Scholar
  59. 59.
    Turner, M. D., Cassell, P. G., and Hitman, G. A. (2005) Calpain-10: from genome search to function. Diabetes Metab Res. Rev. 21, 505–514.CrossRefPubMedGoogle Scholar
  60. 60.
    Harris, F., Chatfield, L., Singh, J., and Phoenix, D. A. (2004) Role of calpains in diabetes mellitus: a mini review. Mol. Cell Biochem. 261, 161–167.CrossRefPubMedGoogle Scholar
  61. 61.
    Cox, N. J., Hayes, M. G., Roe, C. A., Tsuchiya, T., and Bell, G. I. (2004) Linkage of calpain 10 to type 2 diabetes: the biological rationale. Diabetes 53, S19–S25.CrossRefPubMedGoogle Scholar
  62. 62.
    Edwards, A. O., Ritter, R., 3rd, Abel, K. J., Manning, A., Panhuysen, C., and Farrar, L. A. (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424.CrossRefPubMedGoogle Scholar
  63. 63.
    Haines, J. L., Hauser, S. L., Schmidt, S., et al. (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421.CrossRefPubMedGoogle Scholar
  64. 64.
    Klein, R. J., Zeiss, C., Chew, E. Y., et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389.CrossRefPubMedGoogle Scholar
  65. 65.
    Fisher, S. A., Abecasis, G. R., Yashar, B. M., et al. (2005) Meta-analysis of genome scans of age-related macular degeneration. Hum. Mol. Genet. 14, 2257–2264.CrossRefPubMedGoogle Scholar
  66. 66.
    Okamoto, H., Umeda, S., Obazawa, M., et al. (2006) Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol. Vis. 12, 156–158.PubMedGoogle Scholar
  67. 67.
    Rivera, A., Fisher, S. A., Fritsche, L. G., et al. (2005) Hypothertical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 14, 3227–3236.CrossRefPubMedGoogle Scholar
  68. 68.
    Souied, E. H., Leveziel, N., Richard, F., et al. (2005) Y402H complement factor H polymorphism associated with exudative age-related macular degeneration in the French population. Mol. Vis. 11, 1135–1140.PubMedGoogle Scholar
  69. 69.
    Sepp, T., Khan, J. C., Thurlby, D. A., et al. (2006) Complement factor H variant Y402H is a major risk determinant for geographic atrophy and choroidal neovascularization in smokers and nonsmokers. Invest. Ophthalmol. Vis. Sci. 47, 536–540.CrossRefPubMedGoogle Scholar
  70. 70.
    Magnusson, K. P., Duan, S., Sigurdsson, H., et al. (2006) CFH Y302H confers similar risk of soft drusen and both forms of advanced AMD. PLoS Med. 1, e5.CrossRefGoogle Scholar
  71. 71.
    Hageman, G. S., Anderson, D. H., Johnson, L. V., et al. (2005) A common haplotype in the complement regulartory gene factor H (HF1/CFH) predisposes individuals to age-relted macular degeneration. Proc. Natl. Acad. Sci. USA 102, 7227–7232.CrossRefPubMedGoogle Scholar
  72. 72.
    Gold, B., Merriam, J. E., Zernant, J., et al. (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet. 38, 458–462.CrossRefPubMedGoogle Scholar
  73. 73.
    Haines, J. L., Schnetz-Boutaud, N., Schmidt, S., et al. (2006) Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest. Ophthalmol. Vis. Sci. 47, 329–335.CrossRefPubMedGoogle Scholar
  74. 74.
    Jakobsdottir, J., Conley, Y. P., Weeks, D. E., Mah, T. S., Ferrel, R. E., and Gorin, M. B. (2005) Susceptibility genes for age-related maculopathy on chrsomosome 10q26. Am. J. Hum. Genet. 77, 389–407.CrossRefPubMedGoogle Scholar
  75. 75.
    Zareparsi, S., Buracynska, M., Branham, K. E., et al. (2005) Toll-like receptor 4 variant D299G asscoiated with susceptibility to age-related macular degeneration. Hum. Mol. Genet. 14, 1449–1455.CrossRefPubMedGoogle Scholar
  76. 76.
    Wacholder, S. (2005) The impact of a prevention effort on the community. Epidemiology 16, 1–3.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Sudha K. Iyengar
    • 1
  • Robert C. Elston
    • 1
  1. 1.Department of Epidemiology and BiostatisticsCase Western Reserve UniversityCleveland

Personalised recommendations