Fluorescent In Situ Hybridization to Detect Transgene Integration into Plant Genomes

  • Trude SchwarzacherEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 478)


Fluorescent chromosome analysis technologies have advanced our understanding of genome organization during the last 30 years and have enabled the investigation of DNA organization and structure as well as the evolution of chromosomes. Fluorescent chromosome staining allows even small chromosomes to be visualized, characterized by their composition and morphology, and counted. Aneuploidies and polyploidies can be established for species, breeding lines, and individuals, including changes occurring during hybridization or tissue culture and transformation protocols. Fluorescent in situ hybridization correlates molecular information of a DNA sequence with its physical location on chromosomes and genomes. It thus allows determination of the physical position of sequences and often is the only means to determine the abundance and distribution of DNA sequences that are difficult to map with any other molecular method or would require segregation analysis, in particular multicopy or repetitive DNA. Equally, it is often the best way to establish the incorporation of transgenes, their numbers, and physical organization along chromosomes. This chapter presents protocols for probe and chromosome preparation, fluorescent in situ hybridization, chromosome staining, and the analysis of results.


Chromosome fluorescent microscopy physical mapping biotin digoxigenin DAPI 



I would like to thank John Bailey, University of Leicester, for help in refining our laboratory ;rsquo;s FISH protocols, and Pat Heslop-Harrison for reading the manuscript and continuous discussion. Chee How Teo and Alessandra Cotento from my lab, and Katja Richert-Poeggeler, Federal Biological Research Centre for Agriculture and Forestry (BBA), Braunschweig, Germany, are acknowledged for letting me use figures from our joint research projects. Support is acknowledged from the EU-FP5 network PARDIGM QLK3-CT-2002–02098, Generation Challenge Programme and FAO/IAEA Coordinated research Projects.


  1. 1.
    Schweizer, D. (1981) Counterstain-enhanced chromosome banding.Human Genet. 57, 1––14.Google Scholar
  2. 2.
    Contento, A., Heslop-Harrison, J. S. and Schwarzacher, T. (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae.Cytogenet Genome Res. 109, 34––42.CrossRefGoogle Scholar
  3. 3.
    Kowalska, A., Bozsaky, E., RamsauerT. Rieder, D., Bindea G., Lorch T., TrajanoskiZ. Ambros. P. F (2007) A new platform linking chromosomal and sequence informationChromosome Res. 15, 327––339.Google Scholar
  4. 4.
    Schwarzacher T. and Heslop-Harrison J. S. (2000) Practical in situ Hybridization. Bios, Oxford, 213 + xii.Google Scholar
  5. 5.
    Schwarzacher, T. (2003) DNA, chromosomes, and in situ hybridization.Genome 46, 953––962.CrossRefGoogle Scholar
  6. 6.
    Kato, A., Vega, J. M., Han, F., Lamb, J. C. and Birchler, J. A. (2005) Advances in plant chromosome identification and cytogenetic techniques.Curr. Opin. Plant Biol. 8, 148––154.CrossRefGoogle Scholar
  7. 7.
    Hasterok, R., Marasek, A., Donnison, I. S., Armstread, I., Thomas, A., King, I. P., Wolny, E., Idziak, D., Draper, J. and Jenkins, G. (2006) Alignment of the genomes of Brachypodium distachyon. and temperate cereals and grasses using BAC landing with fluorescent in situ hybridization Genetics 173, 349––362.CrossRefGoogle Scholar
  8. 8.
    Forsstr ;ouml;m, P. O., Merker, A. and Schwarzacher, T. (2002) Characterization of mildew resistant wheat-rye substitution lines and identification of an inverted chromosome by fluorescent in situ. hybridization Heredity 88, 349––355.CrossRefGoogle Scholar
  9. 9.
    Heslop-Harrison J. S. (2000). Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes.Plant Cell 12, 617––635.CrossRefGoogle Scholar
  10. 10.
    Brandes, A., Thompson, H., Dean, C. and Heslop-Harrison, J. S. (1997) Multiple, repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana. L Chromosome Res. 5, 238––246.CrossRefGoogle Scholar
  11. 11.
    Dechyeva, D., Gindullis, F. and Schmidt, T. (2003) Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res. 11, 3––21.CrossRefGoogle Scholar
  12. 12.
    Lim, K. Y., Kovarik, A., Matyasek, R., Chase, M. W., Knapp, S., McCarthy, E., Clarkson, J. J. and Leitch, A. R. (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana. section Alatae Plant J. 48, 907––919.CrossRefGoogle Scholar
  13. 13.
    Schwarzacher, T. (1997) Three stages of meiotic homologous chromosome pairing in wheat: cognition, alignment and synapsis.Sexual Plant Reprod. 10, 324––331.CrossRefGoogle Scholar
  14. 14.
    Weierich, C., Brero, A., Stein, S., von Hase, J., Cremer, C., Cremer, T. and Solovei, I. (2003) Three-dimensional arrangements of centromeres and telomeres in nuclei of human DNA murine lymphocutes.Chromosome Res. 11, 485––502.CrossRefGoogle Scholar
  15. 15.
    Desel, C., Jung, C., Cai, D. G., Kleine, M. and Schmidt, T. (2001) High-resoltion mapping of YACs and the single-copy gene Hs1. pro-1 on Beta vulgaris chromosome by multi-colour flurosecence in situ hybridization Plant Mol. Biol. 45, 113––122.CrossRefGoogle Scholar
  16. 16.
    Fransz, P. F., Stam, M., Montijn, B., Ten Hoopen, R., Wiegant, J., Kooter, J. M., Oud, O. and Nanniga, N. (1996) Detection of single-copy genes and chromosome rearrangements in Petunia hybrida. by fluorescence in situ hybridization Plant J. 9, 767––774.CrossRefGoogle Scholar
  17. 17.
    Pedersen, C., Zimny, J., Becker, D., J ;auml;hne-G ;auml;rtner, A. and L ;ouml;rz, H. (1997) Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization.Theor. Appl. Genet. 94, 749––757.CrossRefGoogle Scholar
  18. 18.
    Leggett, J. M., Perret, S. J., Harper, J. and Morris, P. (2000) Chromosomal localization of cotransformed transgenes in the hexaploid cultivated oat Avena sativa. L. using fluorescence in situ hybridization Heredity 84, 46––53.CrossRefGoogle Scholar
  19. 19.
    Salvo-Garrido, H., Travella, S., Schwarzacher, T., Harwood, W. A. and Snape, J. W. (2001) An efficient method for the physical mapping of transgenes in barley using in situ. hybridization Genome 44, 104––110.CrossRefGoogle Scholar
  20. 20.
    Salvo-Garrido, H., Travella, S., Bilham, L. J., Harwood, W. A. and Snape, J. W. (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping.Genetics 167, 1371––1379.CrossRefGoogle Scholar
  21. 21..
    Harper, G. Osuji J. O., Heslop-Harrison J. S. and Hull R. 1999 Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255, 207––213.CrossRefGoogle Scholar
  22. 22.
    Richert-P ;ouml;ggeler, K. R., Noreen, F., Schwarzacher, T., Harper, G. and Hohn, T. (2003) Induction of infectious Petunia vein clearing (pararetro) virus from endogenous provirus in petunia.EMBO J. 22, 4836––4845.CrossRefGoogle Scholar
  23. 23.
    Staginnus, C., Gregor, F., Mette, M. F., Teo, C. H., Borroto-Fern ;aacute;ndez, E. G., Laimer da C ;acirc;mara Machado, M., Matzke, M. and Schwarzacher, T. (2007) Endogenous pararetroviral sequences in tomato (Solanum lycopersicum. ) and related species BMC Plant Biol. 7, 24.CrossRefGoogle Scholar
  24. 24.
    Gall, J. G. and Pardue, M. L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations.P.N.A.S. USA 63, 378––383.CrossRefGoogle Scholar
  25. 25.
    John, H. A., Birnstiel, M. L. and Jones, K. W. (1969) RNA-DNA hybrids at the cytological level.Nature 223, 582––587.CrossRefGoogle Scholar
  26. 26.
    Nederlof, P. M., van der Flier, S., Wiegant, J., Raap, A. K., Tanke, H. J., Ploem, J. S. and van der Ploeg, M. (1990) Multiple fluorescence in situ. hybridization Cytometry 11, 126––131.CrossRefGoogle Scholar
  27. 27.
    M ;uuml;ller, S. Neusser M. and Wienberg J. 2002. Towards unlimited colors for fluorescence in-situ hybridization (FISH) Chromosome Res. 10, 223––232.CrossRefGoogle Scholar
  28. 28.
    Mukai, Y. Ankara Y. YamamotoM. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36, 489––494.CrossRefGoogle Scholar
  29. 29.
    Heslop-Harrison, J. S., Schwarzacher, T., Anamthawat-J ;oacute;nsson, K., Leitch, A. R., Shi, M. and Leitch, I. J. (1991) In situ. hybridization with automated chromosome denaturation Technique 3, 109––115.Google Scholar
  30. 30.
    Kohli, A. Twyman, R. M. Abranches, R. Wegel, E. StogerE. Christou P. (2003) Transgene integration, organization and interaction in plants.Plant Mol. Biol. 52, 247––258. CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of LeicesterLeicester

Personalised recommendations