G-Quadruplex DNA pp 147-158

Part of the Methods in Molecular Biology book series (MIMB, volume 608)

Monitoring the Temperature Unfolding of G-Quadruplexes by UV and Circular Dichroism Spectroscopies and Calorimetry Techniques



DNA oligonucleotides containing guanine repeat sequences can adopt G-quadruplex (GQ) structures in the presence of specific metal ions. We report on how to use a combination of spectroscopic and calorimetric techniques to determine the spectral characteristics and thermodynamic parameters for the temperature-unfolding of GQs. Specifically, we investigated the unfolding of d(G2T2G2TGTG2T2G2), G2, and d(G3T2G3TGTG3T2G3), G3 by a combination of UV and circular dichroism (CD) spectroscopies, and differential scanning calorimetry (DSC).

Analysis of the UV and CD spectra of these GQs at low (100% helix) and high (100% random coil) temperatures yielded the optimal wavelengths to determine the melting curves. In addition, the CD spectra yielded the particular conformation(s) that each GQ adopted at low temperature. DSC curves yielded complete thermodynamic profiles for the unfolding of each GQ. We use these profiles to determine the thermodynamic contributions for the formation of a G-quartet stack.

Key words

Thrombin-binding aptamer G-quartets DNA quadruplexes Cations UV and CD melting curves DSC thermograms Thermodynamics Heat and stability 


  1. 1.
    Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33:2901–2907CrossRefPubMedGoogle Scholar
  2. 2.
    Kankia BI, Marky LA (2001) Folding of the thrombin aptamer into a G-quadruplex with Sr2+: stability, heat, and hydration. J Am Chem Soc 123:10799–10804CrossRefPubMedGoogle Scholar
  3. 3.
    Olsen CM, Gmeiner WH, Marky LA (2006) Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking. J Phys Chem B 110:6962–6969CrossRefPubMedGoogle Scholar
  4. 4.
    Olsen CM, Gmeiner WH, Marky LA (2006) Interaction of Cd2+ with G-quadruplexes containing K+ or Sr2+. J Biomed Nanotech 2:62–70CrossRefGoogle Scholar
  5. 5.
    Cantor CR, Warshow MM, Shapiro H (1970) Oligonucleotide interactions. III. Circular dichroism studies of the confromation of deoxyoligonucleotides. Biopolymers 9:1059–1077CrossRefPubMedGoogle Scholar
  6. 6.
    Marky LA, Blumenfeld KS, Kozlowski S, Breslauer KJ (1983) Salt-dependent conformational transitions in the self-complementary deoxydodecanucleotide d(CGCGAATTCGCG): evidence for hairpin Formation. Biopolymers 22:1247–1257CrossRefPubMedGoogle Scholar
  7. 7.
    Marky LA, Breslauer KJ (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium curves. Biopolymers 26:1601–1620CrossRefPubMedGoogle Scholar
  8. 8.
    Privalov PL, Potekhin SA (1986) Thermo-dynamic effects of mutations on the denaturation of T4 lysozyme. Methods Enzymol 131:4–51CrossRefPubMedGoogle Scholar
  9. 9.
    van Holde KE (1985) Physical Biochemistry, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ, pp 55–57Google Scholar
  10. 10.
    Guo Q, Lu M, Marky LA, Kallenbach NR (1992) Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochemistry. 31:2451–2455CrossRefPubMedGoogle Scholar
  11. 11.
    Miyoshi D, Nakao A, Sugimoto N (2003) Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Res 4:1156–1163CrossRefGoogle Scholar
  12. 12.
    Williamson JR, Raghuraman MK, Cech TR (1989) Mono-valent cation induced structure of telomeric DNA-The G-quartet model. Cell 59:871–880CrossRefPubMedGoogle Scholar
  13. 13.
    Dapic V, Abodmerovic V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ (2003) Biophysical and biological properties of quadruplex oligonucleotides. Nucleic Acids Res 31:2097–2107CrossRefPubMedGoogle Scholar
  14. 14.
    Lu M, Guo Q, Kallenbach NR (1993) Thermodynamics of G-tetraplex formation by telomeric DNAs. Biochemistry 32:598–601CrossRefPubMedGoogle Scholar
  15. 15.
    Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci USA 90:3745–3749CrossRefPubMedGoogle Scholar
  16. 16.
    Simonsson T (2001) G-quadruplex DNA structures-variations on a theme. Biol Chem 382:621–628CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmaceutical Sciences, Department of Biochemistry and Molecular BiologyEppley Institute for Research in Cancer, University of Nebraska Medical CenterOmahaUSA

Personalised recommendations