The Principles of Freeze-Drying

  • Gerald Adams
Part of the Methods in Molecular Biology™ book series (MIMB, volume 368)

Abstract

This chapter provides an up-to-date overview of freeze-drying (lyophilization) with particulars relevance to stabilizing live cells or viruses for industrial applications as vaccines or seed culture. The chapter discusses the importance of formulation, cycle development, validation, and the need to satisfy pharmaceutical regulatory requirements necessary for the commercial exploitation of freeze-dried products.

Key Words

Freeze-drying lyophilization lyoprotectants secondary drying sublimation 

References

  1. 1.
    Adams, G. D. J. (1995) The preservation of inocula. In: Microbiological Quality Assurance: A Guide Towards Relevance and Reproducibility of Inocula, (Brown, M.R.W and Gilbert, P., eds.), CRC Press, London, UK, pp. 89–119.Google Scholar
  2. 2.
    Fanget, B. and Francon, A. (1996) A Varicella vaccine stable at 5 degrees Dev. Biol. Stand. 87, 167–171.Google Scholar
  3. 3.
    Adams, G. D. J. (1996) Lyophilization of vaccines. In: Vaccine Protocols, (Robinson, A., Farrar, G. H., and Wiblin, N., eds.), Humana Press, Totowa, NJ, pp. 167–185.CrossRefGoogle Scholar
  4. 4.
    Gheorghiu, M., Lagranderie, M., and Balazuc, A. M. (1996) Stabilsation of BCG vaccines Dev. Biol. Stand. 87, 251–261.Google Scholar
  5. 5.
    Bindschaedler, C. (1999) Lyophilization process validation. In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, (Rey, L and May, J. C., eds.), Marcel Dekker, New York, pp. 373–408.Google Scholar
  6. 6.
    Mackenzie, A. P. (1985) A current understanding of the freeze-drying of representative aqueous solutions. In: Refrigeration Science and Technology: Fundamentals and Applications of Freeze-Drying to Biological Materials, Drugs and Foodstuffs. International Institute of Refrigeration, Science et Technique du Froid, Refrigeration Science and Technology, Commission C1, Paris, France, pp. 21–34.Google Scholar
  7. 7.
    Oetjen, G. (1999) Industrial freeze-drying for pharmaceutical applications. In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, (Rey, L and May, J. C., eds.), Marcel Dekker, New York, pp. 267–335.Google Scholar
  8. 8.
    Adams, G. D. J. (1995) Freeze-Drying-The Integrated Approach Pharmaceutical Manufacturing International Published by Sterling Publications Limited, London, UK, pp. 177–180.Google Scholar
  9. 9.
    Carpenter, J. F., Izutsu, K., and Randolph, T. W. (1999) Freezing-and dryinginduced perturbations of protein structure and mechanisms of protein protection by stabilizing additives. In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, (Rey, L and May, J. C., eds.), Marcel Dekker, New York, pp. 123–161.Google Scholar
  10. 10.
    Gheorghiu, M., Lagranderie, M., and Balazuc, A. M. (1996) Stabilsation of BCG vaccines. Dev. Biol. Stand. 87, 251–261.Google Scholar
  11. 11.
    Cammack, K. A. and Adams, G. D. J. (1985) Formulation and storage. In: Animal Cell Biotechnology, vol. 2, (Spiers, R. E. and Griffiths, J. eds.), Academic, London, UK, pp. 251–288.Google Scholar
  12. 12.
    Adebayo, A. A., Sim-Brandenburg, J. W., Emmel, H., Olaeye, D. O., Niedrig, M. (1998) Stability of 17D Yellow fever virus vaccine using different stabilisers. Biologicals 26, 309–316.CrossRefGoogle Scholar
  13. 13.
    Mackenzie, A. P. (1977) The physico-chemical basis for the freeze-drying process. In: Developments in Biological Standards, vol. 36. Karger, Basel, Switzerland, pp. 51–57.Google Scholar
  14. 14.
    Willemer, H. (1999) Experimental freeze-drying: procedures and equipment in Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products (Rey, L and May, J. C., eds), Marcel Dekker, pp. 79–121.Google Scholar
  15. 15.
    Franks, F. (1990) Freeze-drying: from empiricism to predictability. Cryoletters 11, 93–110.Google Scholar
  16. 16.
    Franks, F. (1989) Improved freeze-drying: an analysis of the basic scientific principles. Process Biochem. 24, 3–8.Google Scholar
  17. 17.
    Mackenzie, A. P. (1966) Basic principles of freeze-drying for pharmaceuticals. Bull. Parenteral Drug Assoc. 26, 101–129.Google Scholar
  18. 18.
    Cameron, P. (1997) Good Pharmaceutical Freeze-Drying Practice. Interpharm Press, Englewood, CO.Google Scholar
  19. 19.
    Jennings, T. A. (1986) Validation of the lyophilzation process. In: Validation of Aseptic Pharmaceutical Processes, (Carleton, F. J. and Agalloco, J. P., eds.), Marcel Dekker, New York, pp. 595–633.Google Scholar
  20. 20.
    Pikal, M. J. (1999) Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermo stabilization and glassy state relaxation dynamics. In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, (Rey, L. and May, J. C., eds.), Marcel Dekker, New York, pp. 161–198.Google Scholar
  21. 21.
    Franks, F. (1989) Improved freeze-drying: an analysis of the basic scientific principles. Process Biochem. 24, 2–3.Google Scholar
  22. 22.
    Rowe, T. W. G. (1971) Machinery and methods in freeze-drying. Cryobiology 8, 153–172.CrossRefGoogle Scholar
  23. 23.
    Adams, G. D. J. (1996) Technologically Challenged-Freeze Drying Damage Prevention. Medical Laboratory World, June 1996, pp. 43–44.Google Scholar
  24. 24.
    Grout, B., Morris, J., and McLellan, M. (1990) Cryopreservation and the maintenance of cell lines. Tibtech 8, 293–297.Google Scholar
  25. 25.
    Mazur, P., Leibo, S. P., and Chu, C. H. Y. (1972) A two factor hypothesis of freezing injury. Evidence from Chinese Hamster tissue cells. Exp. Cell Res. 71, 345–355.CrossRefGoogle Scholar
  26. 26.
    Franks, F. (1992) Freeze-drying: from empiricism to predictability. The significance of glass transitions. In: Developments in Biological Standards. Karger, Basel,Switzerland, pp. 9–19.Google Scholar
  27. 27.
    Franks, F., Hatley, R. H. M., and Mathias, S. E (1991) Materials science and the product ion of shelf-stable biologicals. Pharm. Technol. Intern, 3, 24–34.Google Scholar
  28. 28.
    Franks, E (1985) Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge, UK, pp. 37.Google Scholar
  29. 29.
    Bellows, R. J. and King, J. (1972) Freeze-drying aqueous solutions: maximal allowable operating temperatures. Cryobiology 9, 559–561.CrossRefGoogle Scholar
  30. 30.
    Levine, H. and Slade, L. (1988) Water as plastizer: physico-chemical aspects of low moisture polymeric systems. Water Set. Rev. 5, 79–185.Google Scholar
  31. 31.
    Pikal, M. J. (1991) Freeze-drying of proteins II: formulation selection. Pharm. Technol. Intern. 3, 40–43.Google Scholar
  32. 32.
    Adams, G. D. J. and Irons, L. I. (1992) Practical aspects of formulation: the avoidance of product collapse. Pharm. J. 249, 442–443.Google Scholar
  33. 33.
    Adams, G. D. J. and Irons, L. I. (1993) Some implications of structural collapse during freeze drying using Erwinia caratovora L-asparaginase as a model. J. Chem. Technol. Biotechnol. 58, 71–76.CrossRefGoogle Scholar
  34. 34.
    Rey, L. R. (1999) Glimpses into the realm of freeze-drying: classic issues and new ventures. In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, (Rey, L. and May, J. C., eds.), Marcel Dekker, New York, pp. 1–30.Google Scholar
  35. 35.
    Livesey, R. G. and Rowe, T. W. G. (1987) A discussion of the effect of chamber pressure on heat and mass transfer in freeze-drying. J. Parenteral. Sci. Technol. 41, 169–171.Google Scholar
  36. 36.
    Adams, G. D. J. and Ramsay, J. R. (1996) Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability of Erwinia l-asparaginase J. Pharm. Sci. 85, 1301–1305.CrossRefGoogle Scholar
  37. 37.
    Adams, G. D. J. (1994) Freeze-drying of biohazardous products. In: Biosafety in Industrial Biotechnology, (Hambleton, P., Melling, J., and Salusbury, T. T., eds.), Blackie Academic and Professional, London, UK, pp. 178–212.Google Scholar
  38. 38.
    de Rizzo, E., Pereira, A., Fang, F. L., et al. (1990) Photo sensitivity and stability of freeze-dried and/or reconstituted measles vaccines. Rev. Saude Publ. 24, 51–59.Google Scholar
  39. 39.
    Fanget, B. and Francon, A. (1996) A Varicella vaccine stable at 5 degrees Dev Biol. Stand. 87, 167–171.Google Scholar
  40. 40.
    Meryman, H. L, Williams, R. J., and St. J., Douglas, M. (1977) Freezing injury from solution effects and its prevention by natural or artificial cryoprotection. Cryobiology 14, 287–302.CrossRefGoogle Scholar
  41. 41.
    Grout, B. W. W. and Morris, G. J. (1987) The Effects of Low Temperatures on Biological Systems. Edward Arnold, London, UK.Google Scholar
  42. 42.
    Farrant, J. (1980) General observations on cell preservation. In: Low Temperature Preservation in Medicine and Biology, (Ashwood-Smith, M. and Farrant, J., eds.), Pitman Medical, Tonbridge Wells, UK, pp. 1–18.Google Scholar
  43. 43.
    Ashwood-Smith, M. T. and Farrant, J. (1980) Low Temperature Preservation in Medicine and Biology. Pitman Medical, Tonbridge Wells, UK.Google Scholar
  44. 44.
    Arakawa, T., Carpenter, J. E, Kita, Y. A., and Crowe, J. H. (1990) The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27, 401–415.CrossRefGoogle Scholar
  45. 45.
    Taylor, M. J. (1981) The meaning of pH at low temperature. Cryobiology 2, 231–239.Google Scholar
  46. 46.
    Greiff, D. and Rightsel, W. A. (1965) Stabilities of suspensions of virus after vacuum sublimation and storage. Cryobiology 3, 435–443.Google Scholar
  47. 47.
    Greiff, D. and Rightsel, W. A. (1968) Stabilities of influenza virus dried to different contents of residual moisture by sublimation in vacuo. Appl. Microbiol. 16, 835–840.Google Scholar
  48. 48.
    Greiff, D. (1971) Protein structure and freeze-drying: the effects of residual moisture and gases. Cryobiology 8, 145–152.CrossRefGoogle Scholar
  49. 49.
    Bellissent-Funel, M. and Teixera, Q. (1999) Structural and dynamic properties of bulk and confined water additives. In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, (Rey, L and May, J. C., eds.), Marcel Dekker, New York, pp. 53–77.Google Scholar
  50. 50.
    Beale, P. T. (1983) Water in biological systems. Cryobiology 20, 528–531.Google Scholar
  51. 51.
    Center for Biologies Evaluation and Research. (1990) Guidelines for the determination of residual moisture in dried biological products. Docket No. 89D-0 140 Docket Management Branch (HFA 305), Food and Drug Administration, Rockville, MD.Google Scholar
  52. 52.
    Phillips, G. O., Harrop, R., Wedlock, D. J., Srbova, H., Celba, V., and Drevo, M. (1981) A study of the water binding in lyophilised viral vaccine systems. Cryobiology 18, 414–419.CrossRefGoogle Scholar
  53. 53.
    Greiff, D. and Rightsel, W. A. (1969) Stabilities of freeze-dried suspensions of influenza virus sealed in vacuum or under different gases. Appl. Microbiol. 17, 830–835.Google Scholar
  54. 54.
    Adams, G. D. J. (1990) Residual moisture and the freeze-dried product. In: Lyophilization Technology Handbook. The Center for Professional Advancement, East Brunswick, NJ, pp. 581–604.Google Scholar
  55. 55.
    Heckly, R. J. and Quay, J. (1983) Adventitious chemistry at reduced water activities: free radicals and polyhydroxy compounds. Cryobiology 20, 613–624.CrossRefGoogle Scholar
  56. 56.
    Cox, C. S. (1991) Roles of MaillardReactions in Disease. HMSO Publications, London, UK.Google Scholar
  57. 57.
    Cowdery, S., Frey, M., Orlowski, S., and Gray, A. (1977) Stability characteristics of freeze-dried human live virus vaccines. In: International Symposium on Freeze-Drying of Biological Products, vol. 36: Developments in Biological Standards. Karger, Basel, Switzerland, pp. 297–303.Google Scholar
  58. 58.
    Nicholson, A. E. (1977) Predicting stability of lyophilized products. In: International Symposium on Freeze-Drying of Biological Products, vol. 36: Developments in Biological Standards. Karger, Basel, Switzerland, pp. 69–75.Google Scholar
  59. 59.
    Griffin, W., Cook, F. C., and Mehaffrey, M. A. (1981) Predicting the stability of freeze-dried Fusobacterium montiferum. Proficiency testing samples by accelerated storage tests. Cryobiology 18, 420–425.CrossRefGoogle Scholar
  60. 60.
    Tsourouflis, S., Funk, J. M., and Karel, M. (1976) Loss of structure in freeze-dried carbohydrate solutions: the effect of temperature, moisture content and composition. J. Sci. Food Agricul. 27, 509–519.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Gerald Adams
    • 1
  1. 1.LyosolutionsSalisbury, WiltshireUK

Personalised recommendations