The Chronological Life Span of Saccharomyces cerevisiae

  • Paola Fabrizio
  • Valter D. Longo
Part of the Methods in Molecular Biology™ book series (MIMB, volume 371)

Abstract

The chronological life span of yeast, which is measured as the survival time of populations of nondividing cells, has been used successfully for the identification of key pathways responsible for the regulation of aging. These pathways have remarkable similarities with those that regulate the life span in higher eukaryotes, suggesting that longevity depends on the activity of genes and signaling pathways that share a common evolutionary origin Thus, the unicellular Saccharomyces cerevisiae is a simple model system that can provide significant insights into the human genetics and molecular biology of aging. Here, we describe the standard procedures to measure the chronological life span, including both the normal and calorie restriction paradigms.

Key Words

Chronological aging Sch9 insulin/IGF-I calorie restriction 

References

  1. 1.
    Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M., and Longo, V. D. (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290.CrossRefPubMedGoogle Scholar
  2. 2.
    Longo, V. D. and Finch, C. E. (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342–1346.CrossRefPubMedGoogle Scholar
  3. 3.
    Bitterman, K. J., Medvedik, O., and Sinclair, D. A. (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol. Mol. Biol. Rev. 67, 376–399.CrossRefPubMedGoogle Scholar
  4. 4.
    Werner-Washburne, M., Braun, E., Johnston, G. C., and Singer, R. A. (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 57, 383–401.PubMedGoogle Scholar
  5. 5.
    Fabrizio, P., Battistella, L., Vardavas, R., et al. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol. 166, 1055–1067.CrossRefPubMedGoogle Scholar
  6. 6.
    Gray, J. V., Petsko, G. A., Johnston, G. C., Ringe, D., Singer, R. A., and Wemer-Washburne, M. (2004) “Sleeping Beauty”: quiescence in Saccharomyces Cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206.CrossRefPubMedGoogle Scholar
  7. 7.
    Dorman, J. B., Albinder, B., Shroyer, T., and Kenyon, C. (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406.PubMedGoogle Scholar
  8. 8.
    Lillie, S. H. and Pringle, J. R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacterial. 143, 1384–1394.Google Scholar
  9. 9.
    Pedruzzi, I., Burckert, N., Egger, P., and De Virgilio, C. (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. Embo J. 19, 2569–2579.CrossRefPubMedGoogle Scholar
  10. 10.
    Fabrizio, P., Liou, L. L., Moy, V. N., et al. (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35–46.PubMedGoogle Scholar
  11. 11.
    Guthrie, C. and Fink, G. R. (1991) in Guide to Yeast Genetics and Molecular Biology Vol. 194. Academic, San Diego.Google Scholar
  12. 12.
    Zambrano, M. M. and Kolter, R. (1996) GASPing for life in stationary phase. Cell 86, 181–184.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Paola Fabrizio
    • 1
  • Valter D. Longo
    • 1
  1. 1.Andrus Gerontology Center, Division of Biogerontology and Department of Biological SciencesUniversity of Southern CaliforniaLos Angeles

Personalised recommendations