Methods to Detect Biomarkers of Cellular Senescence

The Senescence-Associated β-Galactosidase Assay
  • Koji Itahana
  • Judith Campisi
  • Goberdhan P. Dimri
Part of the Methods in Molecular Biology™ book series (MIMB, volume 371)


Most normal human cells undergo cellular senescence after accruing a fixed number of cell divisions, or are challenged by a variety of potentially oncogenic stimuli, in culture and most likely in vivo. Cellular senescence is characterized by an irreversible growth arrest and certain altered functions. Senescent cells in culture are identified by their inability to undergo DNA synthesis, a property also shared by quiescent cells. Several years ago, we described a biomarker associated with the senescent phenotype, a senescence associated β-galactosidase (SA-β-gal), which is detected by histochemical staining of cells using the artificial substrate X-gal. The presence of the SA-β-gal biomarker is independent of DNA synthesis and generally distinguishes senescent cells from quiescent cells. The method to detect SA-β-gal is a convenient, single cell-based assay, which can identify senescent cells even in heterogeneous cell populations and aging tissues, such as skin biopsies from older individuals. Because it is easy to detect, SA-β-gal is currently a widely used biomarker of senescence. Here we describe a method to detect SA-β-gal in detail, including some recent modifications.

Key Words

Cellular senescence biomarker SA-β-gal aging immunostaining thymidine labeling p16 ARF 


  1. 1.
    Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.CrossRefGoogle Scholar
  2. 2.
    Campisi, J. (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31.PubMedGoogle Scholar
  3. 3.
    Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522CrossRefPubMedGoogle Scholar
  4. 4.
    de Lange, T. (2001) Cell biology. Telomere capping—one strand fits all. Science 292, 1075–1076.CrossRefPubMedGoogle Scholar
  5. 5.
    Itahana, K., Campisi, J., and Dimri, G. P. (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5, 1–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Ben-Porath, I. and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8–13.PubMedGoogle Scholar
  7. 7.
    Dimri, G. P., Lee, X., Basile, G., et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367.CrossRefPubMedGoogle Scholar
  8. 8.
    Krishnamurthy, J., Torrice, C., Ramsey, M. R., et al. (2004) Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307.PubMedGoogle Scholar
  9. 9.
    Cao, L., Li, W., Kim, S., Brodie, S. G., and Deng, C. X. (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 17, 201–213.CrossRefPubMedGoogle Scholar
  10. 10.
    Sun, L. Q., Lee, D. W., Zhang, Q., et al. (2004) Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev. 18, 1035–1046.CrossRefPubMedGoogle Scholar
  11. 11.
    Choi, J., Shendrik, I., Peacocke, M., et al. (2000) Expression of senescenceassociated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology 56, 160–166.CrossRefPubMedGoogle Scholar
  12. 12.
    Castro, P., Giri, D., Lamb, D., and Ittmann, M. (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55, 30–38.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferlicot, S., Durrbach, A., Ba, N., Desvaux, D., Bedossa, P., and Paradis, V. (2003) The role of replicative senescence in chronic allograft nephropathy. Hum. Pathol. 34, 924–928.CrossRefPubMedGoogle Scholar
  14. 14.
    Mishima, K., Handa, J. T., Aotaki-Keen, A., Lutty, G. A., Morse, L. S., and Hjelmeland, L. M. (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Invest. Ophthalmol Vis. Sci. 40, 1590–1593.PubMedGoogle Scholar
  15. 15.
    Melk, A., Schmidt, B. M., Takeuchi, O., Sawitzki, B., Rayner, D. C., and Halloran, P. F. (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 65, 510–520.CrossRefPubMedGoogle Scholar
  16. 16.
    Pendergrass, W. R., Lane, M. A., Bodkin, N. L., et al. (1999) Cellular proliferation potential during aging and caloric restriction in rhesus monkeys (Macaca mulatta). J. Cell. Physiol. 180, 123–130.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Leonardo, A., Linke, S. P., Clarkin, K., and Wahl, G. M. (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551.CrossRefPubMedGoogle Scholar
  18. 18.
    Robles, S. J. and Adami, G. R. (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123.CrossRefPubMedGoogle Scholar
  19. 19.
    Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., and Alt, F. W. (2005) DNA repair, genome stability, and aging. Cell 120, 497–512.CrossRefPubMedGoogle Scholar
  20. 20.
    von Zglinicki, T., Saretzki, G., Docke, W., and Lotze, C. (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186–193.CrossRefGoogle Scholar
  21. 21.
    Chen, Q. M., Bartholomew, J. C., Campisi, J., Acosta, M., Reagan, J. D., and Ames, B. N. (1998) Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332 (Pt 1), 43–50.PubMedGoogle Scholar
  22. 22.
    Blander, G., de Oliveira, R. M., Conboy, C. M., Haigis, M., and Guarente, L. (2003) Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J. Biol. Chem. 278, 38,966–38,969.CrossRefPubMedGoogle Scholar
  23. 23.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu, J., Woods, D., McMahon, M., and Bishop, J. M. (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007.CrossRefPubMedGoogle Scholar
  25. 25.
    Dimri, G. P., Itahana, K., Acosta, M., and Campisi, J. (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285.CrossRefPubMedGoogle Scholar
  26. 26.
    Ohtani, N., Zebedee, Z., Huot, T. J., et al. (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409, 1067–1070.CrossRefPubMedGoogle Scholar
  27. 27.
    Kato, D., Miyazawa, K., Ruas, M., et al. (1998) Features of replicative senescence induced by direct addition of antennapedia-p16INK4A fusion protein to human diploid fibroblasts. FEBS Lett. 427, 203–208.CrossRefPubMedGoogle Scholar
  28. 28.
    Pearson, M., Carbone, R., Sebastiani, C., et al. (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210.CrossRefPubMedGoogle Scholar
  29. 29.
    Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S. W. (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027.PubMedGoogle Scholar
  30. 30.
    Itahana, K., Zou, Y., Itahana, Y., et al. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389–401.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Koji Itahana
    • 1
  • Judith Campisi
    • 2
  • Goberdhan P. Dimri
    • 3
  1. 1.Department of Radiation Oncology, School of MedicineThe University of North CarolinaChapel Hill
  2. 2.Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeley
  3. 3.Division of Cancer Biology, Department of Medicine, ENH Research Institute, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of MedicineNorthwestern UniversityEvanston

Personalised recommendations