Dynamic Assessment of Cell-Matrix Mechanical Interactions in Three-Dimensional Culture

  • W. Matthew Petroll
Part of the Methods in Molecular Biology™ book series (MIMB, volume 370)

Abstract

Cell-matrix mechanical interactions play a defining role in a range of biological processes such as developmental morphogenesis and wound healing. Despite current agreement that fibroblasts exert mechanical forces on the extracellular matrix (ECM) to promote structural organization of the collagen architecture, the underlying mechanisms of force generation and transduction to the ECM are not completely understood. Investigation of these processes has been limited, in part, by the technical challenges associated with simultaneous imaging of cell activity and fibrillar collagen organization. To overcome these limitations, we have developed an experimental model in which cells expressing proteins tagged with enhanced green fluorescent protein are plated inside fibrillar collagen matrices, and high magnification time-lapse differential interference contrast and fluorescent imaging is then performed. Using this system, focal adhesion movement and reorganization in isolated cells can be directly correlated with collagen matrix deformation and changes in the mechanical behavior of fibroblasts can be assessed over time.

Key Words

Focal adhesions focal complexes cell motility collagen matrices actomyosin cell mechanics three-dimensional culture 

References

  1. 1.
    Harris, A. K., Wild, P., and Stopak, D. (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–189.PubMedCrossRefGoogle Scholar
  2. 2.
    Harris, A. K., Stopak, D., and Wild, P. (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290, 249–251.PubMedCrossRefGoogle Scholar
  3. 3.
    Harris, A. K. (1986) Cell traction in relationship to morphogenesis and malignancy. Dev. Biol. 3, 339–357.Google Scholar
  4. 4.
    Stopak, D. and Harris, A. K. (1982) Connective tissue morphogenesis by fibroblast traction. Dev. Biol. 90, 383–398.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, J., Leonard, M., Oliver, T., Ishihara, A., and Jacobson, K. (1994) Traction forces generated by locomoting keratocytes. J. Cell Biol. 127, 1957–1964.PubMedCrossRefGoogle Scholar
  6. 6.
    Oliver, T., Dembo, M., and Jacobson, K. (1995) Traction forces in locomoting cells. Cell Motil. Cytoskeleton 31, 225–240.PubMedCrossRefGoogle Scholar
  7. 7.
    Balaban, N. Q., Schwarz, U. S., Riveline, D., et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472.PubMedCrossRefGoogle Scholar
  8. 8.
    Pelham, R. J. Jr. and Wang, Y. (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13,661–13,665.PubMedCrossRefGoogle Scholar
  9. 9.
    Pelham, R. J. and Wang, Y. (1999) High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10, 935–945.PubMedGoogle Scholar
  10. 10.
    Wang, Y. L. and Pelham, R. J. Jr. (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496.PubMedCrossRefGoogle Scholar
  11. 11.
    Munevar, S., Wang, Y., and Dembo, M. (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757.PubMedCrossRefGoogle Scholar
  12. 12.
    Pelham, R. J. Jr. and Wang, Y. L. (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol. Bull. 194, 348–350.PubMedCrossRefGoogle Scholar
  13. 13.
    Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V., and Wang, Y. L. (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888.PubMedCrossRefGoogle Scholar
  14. 14.
    Beningo, K. A., Dembo, M., and Wang, Y. L. (2004) Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl. Acad. Sci. 101, 18,024–18,029.PubMedCrossRefGoogle Scholar
  15. 15.
    Bard, J. B. L. and Hay, E. D. (1975) The behavior of fibroblasts from the developing avian cornea: morphology and movement in situ and in vitro. J. Cell Biol. 67, 400–418.PubMedCrossRefGoogle Scholar
  16. 16.
    Cukierman, E., Pankov, R., and Yamada, K. M. (2002) Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639.PubMedCrossRefGoogle Scholar
  17. 17.
    Cukierman, E., Pankov, R., Stevens, D. R., and Yamada, K. M. (2001) Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712.PubMedCrossRefGoogle Scholar
  18. 18.
    Doane, K. J. and Birk, D. E. (1991) Fibroblasts retain their tissue phenotype when grown in three-dimensional collagen gels. Exp. Cell Res. 195, 432–442.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedl, P. and Brocker, E.-B. (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57, 41–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Tomasek, J. J., Hay, E. D., and Fujiwara, K. (1982) Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroma fibroblasts: distribution of actin, α-actinin and myosin. Dev. Biol. 92, 107–122.PubMedCrossRefGoogle Scholar
  21. 21.
    Abbott, A. (2003) Biology’s new dimension. Nature 424, 870–872.PubMedCrossRefGoogle Scholar
  22. 22.
    Bell, E., Ivarsson, B., and Merril, C. (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vivo. Proc. Natl. Acad. Sci. USA 76, 1274–1278.PubMedCrossRefGoogle Scholar
  23. 23.
    Elsdale, T. and Bard, J. (1972) Collagen substrata for studies on cell behavior. J. Cell Biol. 54, 626–637.PubMedCrossRefGoogle Scholar
  24. 24.
    Grinnell, F. and Lamke, C. R. (1984) Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 66, 51–63.PubMedGoogle Scholar
  25. 25.
    Grinnell, F. (2000) Fibroblast-collagen matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10, 362–365.PubMedCrossRefGoogle Scholar
  26. 26.
    Cheema, U., Yang, S.-Y., Mudera, V., Goldspink, G. G., and Brown, R. A. (2003) 3-D in vitro model of early skeletal muscle development. Cell Motil. Cytoskeleton 54, 226–236.PubMedCrossRefGoogle Scholar
  27. 27.
    Eastwood, M., McGrouther, D. A., and Brown, R. A. (1994) A culture force monitor for measurement of contraction forces generated in human dermal fibroblast cultures: evidence for cell matrix mechanical signalling. Biochim. Biophys. Acta 1201, 186–192.PubMedGoogle Scholar
  28. 28.
    Kolodney, M. S. and Elson, E. L. (1993) Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268, 23,850–23,855.PubMedGoogle Scholar
  29. 29.
    Wakatsuki, T. and Elson, E. L. (2003) Reciprocal interactions between cells and extracellular matrix during remodeling of tissue constructs. Biophys. Chem. 100, 593–605.PubMedCrossRefGoogle Scholar
  30. 30.
    Arora, P. D., Narani, N., and McCulloch, C. A. G. (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am. J. Pathol. 154, 871–882.PubMedCrossRefGoogle Scholar
  31. 31.
    Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V., and Eastwood, M. (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175, 323–332.PubMedCrossRefGoogle Scholar
  32. 32.
    Freyman, T. M., Yannas, I. V., Yokoo, R., and Gibson, L. J. (2002) Fibroblast contractile force is independent of the stiffness which resists the contraction. Exp. Cell Res. 272, 153–162.PubMedCrossRefGoogle Scholar
  33. 33.
    Parizi, M., Howard, E. W., and Tomasek, J. J. (2000) Regulation of LPA-promoted myofibroblast contraction: role of rho, myosin light chain kinase, and myosin light chain phosphotase. Exp. Cell Res. 254, 210–220.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenfeldt, H., Lee, D. J., and Grinnell, F. (1998) Increased c-fos mRNA expression by human fibroblasts contracting stressed collagen matrices. Mol. Cell. Biol. 18, 2659–2667.PubMedGoogle Scholar
  35. 35.
    Shreiber, D. I., Enever, P. A. J., and Tranquillo, R. T. (2001) Effects of PDGF-BB on rat dermal fibroblast behavior in mechnically stressed and unstressed collagen and fibrin gels. Exp. Cell Res. 266, 155–166.PubMedCrossRefGoogle Scholar
  36. 36.
    Skuta, G., Ho, C.-H., and Grinnell, F. (1999) Increased myosin light chain phosphorylation is not required for growth factor stimulation of collagen matrix contraction. J. Biol. Chem. 274, 30,163–30,168.PubMedCrossRefGoogle Scholar
  37. 37.
    Vaughan, M. B., Howard, E. W., and Tomasek, J. J. (2000) Transforming growth factor-?1 promotes the morphological and functional differentiation of the myofibroblast. Exp. Cell Res. 257, 180–189.PubMedCrossRefGoogle Scholar
  38. 38.
    Grinnell, F., Ho, C.-H., Tamariz, E., Lee, D. J., and Skuta, G. (2003) Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Cell. Biol. 14, 384–395.CrossRefGoogle Scholar
  39. 39.
    Abe, M., Ho, C.-H., Kamm, K. E., and Grinnell, F. (2003) Different molecular motors mediate platelet-derived growth factor and lysophosphatidic acid-mediated floating collagen matrix contraction. J. Biol. Chem. 278, 47,707–47,712.PubMedCrossRefGoogle Scholar
  40. 40.
    Petroll, W. M. and Ma, L. (2003) Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices. Cell Motil. Cytoskeleton 55, 254–264.PubMedCrossRefGoogle Scholar
  41. 41.
    Petroll, W. M., Ma, L., and Jester, J. V. (2003) Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116, 1481–1491.PubMedCrossRefGoogle Scholar
  42. 42.
    Vishwanath, M., Ma, L., Jester, J. V., Otey, C. A., and Petroll, W. M. (2003) Modulation of corneal fibroblast contractility within fibrillar collagen matrices. Invest. Ophthalmol. Vis. Sci. 44, 4724–4735.PubMedCrossRefGoogle Scholar
  43. 43.
    Petroll, W. M., Vishwanath, M., and Ma, L. (2004) Corneal fibroblasts respond rapidly to changes in local mechanical stress. Invest. Ophthalmol. Vis. Sci. 45, 3466–3474.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaverina, I., Krylyshkina, O., and Small, J. V. (1999) Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaverina, I., Krylyshkina, O., Gimona, M., Beningo, K., Wang, Y. L., and Small, J. V. (2000) Enforced polarisation and locomotion of fibroblasts lacking microtubules. Curr. Biol. 10, 739–742.PubMedCrossRefGoogle Scholar
  46. 46.
    Rottner, K., Krause, M., Gimona, M., Small, J. V., and Wehland, J. (2001) Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol. Biol. Cell 12, 3103–3113.PubMedGoogle Scholar
  47. 47.
    Moller-Pedersen, T., Cavanagh, H. D., Petroll, W. M., and Jester, J. V. (1998) Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea 17, 627–639.PubMedCrossRefGoogle Scholar
  48. 48.
    Moller-Pedersen, T., Cavanagh, H. D., Petroll, W. M., and Jester, J. V. (1998) Neutralizing antibody to TGF? modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr. Eye Res. 17, 736–747.PubMedCrossRefGoogle Scholar
  49. 49.
    Petroll, W. M., Cavanagh, H. D., Barry-Lane, P., Andrews, P., and Jester, J. V. (1993) Quantitative analysis of stress fiber orientation during corneal wound contraction. J. Cell Sci. 104, 353–363.PubMedGoogle Scholar
  50. 50.
    Edlund, E., Lotano, M. A., and Otey, C. A. (2001) Dynamics of α-actinin in focal adhesions and stress fibers visualized with α-actinin green fluorescent protein. Cell Motil. Cytoskeleton 48, 190–200.PubMedCrossRefGoogle Scholar
  51. 51.
    Friedl, P., Noble, P. B., and Zanker, K. S. (1995) T lymphocyte locomotion in a three-dimensional collagen matrix. J. Immunol. 154, 4973–4985.PubMedGoogle Scholar
  52. 52.
    Friedl, P., Maaser, K., Klein, C. E., Niggemann, B., Krohne, G., and Zanker, K. S. (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res. 57, 2061–2070.PubMedGoogle Scholar
  53. 53.
    Friedl, P., Zanker, K., and Brocker, E.-B. (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378.PubMedCrossRefGoogle Scholar
  54. 54.
    Hegerfeldt, Y., Tusch, M., Brocker, E.-B., and Friedl, P. (2002) Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, β1-integrin function, and migration strategies. Cancer Res. 62, 2125–2130.PubMedGoogle Scholar
  55. 55.
    Wolf, K., Mazo, I., Leung, H., et al. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277.PubMedCrossRefGoogle Scholar
  56. 56.
    Petroll, W. M., Cavanagh, H. D., and Jester, J. V. (2004) Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts. Scanning 26, 1–10.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • W. Matthew Petroll
    • 1
  1. 1.Department of OphthalmologyUniversity of Texas Southwestern Medical CenterDallas

Personalised recommendations