Analysis of Neutrophil Chemotaxis

  • Paul A. Nuzzi
  • Mary A. Lokuta
  • Anna Huttenlocher
Part of the Methods in Molecular Biology™ book series (MIMB, volume 370)


Neutrophils are the initial responders to bacterial infection or other inflammatory stimuli and comprise a key component of the innate immune response. In addition to their unique morphology and antimicrobial activity, neutrophils are characterized by the ability to migrate rapidly up shallow gradients of attractants in vivo. The directed migration of neutrophils, referred to as chemotaxis, requires the temporal and spatial regulation of intracellular signaling pathways allowing the neutrophil to detect a gradient of attractant, polarize, and migrate rapidly toward the highest concentration of the chemoattractant. A challenge to understanding neutrophil chemotaxis is the inherent difficulty encountered when working with primary neutrophils, which are difficult to purify in the resting state, are not easily transfected, are terminally differentiated, and have a short life span after purification. Here we discuss neutrophil purification methods and chemotaxis assays and provide methodology for working with a neutrophil-like cell line, the HL-60 promyelocytic leukemia cell line. We also discuss methods for HL-60 transfection using retroviral approaches and chemotaxis assays used with differentiated HL-60 cells.

Key Words

Chemotaxis neutrophil HL-60 cell line time-lapse video microscopy Transwell assay 


  1. 1.
    Ley, K. (2002) Integration of inflammatory signals by rolling neutrophils. Immunol. Rev. 186, 8–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Parent, C. A. and Devreotes, P. N. (1999) A cell’s sense of direction. Science 284, 65–70.CrossRefGoogle Scholar
  3. 3.
    Bourne, H. R. and Weiner, O. (2002) A chemical compass. Nature 419, 21.PubMedCrossRefGoogle Scholar
  4. 4.
    Weiner, O. D., Servant, G., Welch, M. D., Mitchison, T. J., Sedat, J. W., and Bourne, H. R. (1999) Spatial control of actin polymerization during neutrophil chemotaxis. Nat. Cell Biol. 1, 75–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Niggli, V. (1999) Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett. 445, 69–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Eddy, R. J., Pierini, L. M., Matsumura, F., and Maxfield, F. R. (2000) Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113 (Pt. 7), 1287–1298.PubMedGoogle Scholar
  7. 7.
    Funamoto, S., Meili, R., Lee, S., Parry, L., and Firtel, R. A. (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623.PubMedCrossRefGoogle Scholar
  8. 8.
    Haugh, J. M., Codazzi, F., Teruel, M., and Meyer, T. (2000) Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151, 1269–1280.PubMedCrossRefGoogle Scholar
  9. 9.
    Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. M. (2000) Localized Rac activation dynamics visualized in living cells. Science 290, 333–337.PubMedCrossRefGoogle Scholar
  10. 10.
    Lokuta, M. A., Nuzzi, P. A., and Huttenlocher, A. (2003) Calpain regulates neutrophil chemotaxis. Proc. Natl. Acad. Sci. USA 100, 4006–4011.PubMedCrossRefGoogle Scholar
  11. 11.
    Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, F., Herzmark, P., Weiner, O. D., Srinivasan, S., Servant, G., and Bourne, H. R. (2002) Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518.PubMedCrossRefGoogle Scholar
  13. 13.
    Weiner, O. D., Neilsen, P. O., Prestwich, G. D., Kirschner, M. W., Cantley, L. C., and Bourne, H. R. (2002) A PtdInsP(3)-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4, 509–513.PubMedCrossRefGoogle Scholar
  14. 14.
    Seveau, S., Eddy, R. J., Maxfield, F. R., and Pierini, L. M. (2001) Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol. Biol. Cell 12, 3550–3562.PubMedGoogle Scholar
  15. 15.
    Pierini, L. M., Eddy, R. J., Fuortes, M., Seveau, S., Casulo, C., and Maxfield, F. R. (2003) Membrane lipid organization is critical for human neutrophil polarization. J. Biol. Chem. 278, 10,831–10,841.PubMedCrossRefGoogle Scholar
  16. 16.
    Manes, S., Ana Lacalle, R., Gomez-Mouton, C., and Martinez, A. C. (2003) From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol. 24, 320–326.PubMedCrossRefGoogle Scholar
  17. 17.
    Huttenlocher, A., Ginsberg, M. H., and Horwitz, A. F. (1996) Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol. 134, 1551–1562.PubMedCrossRefGoogle Scholar
  18. 18.
    Wells, C. M. and Ridley, A. J. (2005) Analysis of cell migration using the Dunn chemotaxis chamber and time-lapse microscopy. Methods Mol. Biol. 294, 31–41.PubMedGoogle Scholar
  19. 19.
    Heit, B. and Kubes, P. (2003) Measuring chemotaxis and chemokinesis: the underagarose cell migration assay. Sci. STKE 2003, PL5.PubMedCrossRefGoogle Scholar
  20. 20.
    Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W., and Bourne, H. R. (1999) Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell 10, 1163–1178.PubMedGoogle Scholar
  21. 21.
    Alblas, J., Ulfman, L., Hordijk, P., and Koenderman, L. (2001) Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol. Biol. Cell 12, 2137–2145.PubMedGoogle Scholar
  22. 22.
    Stofega, M. R., Sanders, L. C., Gardiner, E. M., and Bokoch, G. M. (2004) Constitutive p21-activated kinase (PAK) activation in breast cancer cells as a result of mislocalization of PAK to focal adhesions. Mol. Biol. Cell 15, 2965–2977.PubMedCrossRefGoogle Scholar
  23. 23.
    Li, S., Yamauchi, A., Marchal, C. C., Molitoris, J. K., Quilliam, L. A., and Dinauer, M. C. (2002) Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. J. Immunol. 169, 5043–5051.PubMedGoogle Scholar
  24. 24.
    Glogauer, M., Marchal, C. C., Zhu, F., et al. (2003) Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J. Immunol. 170, 5652–5657.PubMedGoogle Scholar
  25. 25.
    Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C. (1978) Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA 75, 2458–2462.PubMedCrossRefGoogle Scholar
  26. 26.
    Hauert, A. B., Martinelli, S., Marone, C., and Niggli, V. (2002) Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int. J. Biochem. Cell Biol. 34, 838–854.PubMedCrossRefGoogle Scholar
  27. 27.
    Ruoslahti, E., Hayman, E. G., Pierschbacher, M., and Engvall, E. (1982) Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 82 (Pt. A), 803–831.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Paul A. Nuzzi
    • 1
  • Mary A. Lokuta
    • 2
  • Anna Huttenlocher
    • 3
  1. 1.Department of Molecular and Cellular PharmacologyUniversity of Wisconsin Medical SchoolMadison
  2. 2.Department of PediatricsUniversity of Wisconsin Medical SchoolMadison
  3. 3.Departments of Pediatrics and PharmacologyUniversity ofWisconsin Medical SchoolMadison

Personalised recommendations