Advertisement

Measurement of Glomerular Filtration Rate in Conscious Mice

  • Zhonghua Qi
  • Matthew D. Breyer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 466)

Abstract

Glomerular filtration rate (GFR) is an important index of renal function and routinely used in patient care and basic research to evaluate progression of renal diseases or test the efficacy of novel therapeutic strategies. Determination of GFR in mouse models has been mostly practiced in anesthetized animals, which is not suitable for serial monitoring of GFR in the individual mouse. In this chapter, we outline two approaches for determining GFR in conscious mice including 1) determination of urinary excretion of fluorescein-labelled inulin (FITC–inulin), and 2) determination of plasma FITC–inulin decay following a single bolus injection. The GFR values determined using these two methods are comparable. The sensitivity of the methods in reflecting renal function was validated in nephrectomized mice and early stage diabetic mice. The effects of inbred mouse genetic background on GFR values are also discussed in this chapter.

Keywords

Hemodynamics Glomerular filtration rate Nephrectomy Diabetes mellitus Salts 

References

  1. 1.
    Coresh, Byrd-Holt, D., Astor, B. C., Briggs, J. P., Eggers, P. W., Lacher, D. A., and Hostetter, T. H. (2005). Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol 16, 180–188.PubMedCrossRefGoogle Scholar
  2. 2.
    Hallan, S. I., Coresh, J., Astor, B. C., Asberg, A., Powe ,N. R., Romundstad, S., Hallan, H. A., Lydersen, S., and Holmen, J. (2006). International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 17, 2275–2284.PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer, P. A., Bogoliuk, C. B., Ramirez, A. J., Sanchez, R. A., and Masnatta, L. D. (2000). A new procedure for evaluation of renal function without urine collection in rat. Kidney Int 58, 1336–1341.PubMedCrossRefGoogle Scholar
  4. 4.
    Prescott, L. F., Freestone, S., and McAuslane, J. A. (1991). Reassessment of the single intravenous injection method with inulin for measurement of the glomerular filtration rate in man. Clin Sci (Lond) 80, 167–176.Google Scholar
  5. 5.
    Levey, A. S. (1990). Measurement of renal function in chronic renal disease. Kidney Int 38, 167–184.PubMedCrossRefGoogle Scholar
  6. 6.
    Ahloulay, M., Dechaux, M., Laborde, K., and Bankir, L. (1995). Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am J Physiol 269, F225–235.PubMedGoogle Scholar
  7. 7.
    Bouby, N., Ahloulay, M., Nsegbe, E., Dechaux, M., Schmitt, F., and Bankir, L. (1996). Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action. J Am Soc Nephrol 7, 842–851.PubMedGoogle Scholar
  8. 8.
    Qi, Z., Whitt, I., Mehta, A., Jin, J., Zhao, M., Harris, R. C., Fogo, A. B., and Breyer, M. D. (2004). Serial determination of glomerular filtration rate in conscious mice using FITC–inulin clearance. Am J Physiol Renal Physiol 286, F590–596.PubMedCrossRefGoogle Scholar
  9. 9.
    Lorenz, J. N. and Gruenstein, E. (1999). A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC–inulin. Am J Physiol 276, F172–177.PubMedGoogle Scholar
  10. 10.
    Catlin, D.H. (1983). Pharmacokinetics. In: Essentials of Pharmacology, C., edited by J.A. Bevan and J.H. Thompson. 3rd edn., Harper & Row, Publishers, Inc., Philadelphia.Google Scholar
  11. 11.
    Sturgeon, Sam, A. D., 2nd, and Law, W. R. (1998). Rapid determination of glomerular filtration rate by single-bolus inulin: a comparison of estimation analyses. J Appl Physiol 84, 2154–2162.PubMedGoogle Scholar
  12. 12.
    Ma, L. J. and Fogo, A. B. (2003). Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 64, 350–355.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldfarb, D. A., Matin, S. F., Braun, W. E., Schreiber, M. J., Mastroianni, B., Papajcik, D., Rolin, H. A., Flechner, S., Goormastic, M., and Novick, A. C. (2001). Renal outcome 25 years after donor nephrectomy. J Urol 166, 2043–2047.PubMedCrossRefGoogle Scholar
  14. 14.
    Hammond, K. A. and Janes, D. N. (1998). The effects of increased protein intake on kidney size and function. J Exp Biol 201 (Pt 13), 2081–2090.PubMedGoogle Scholar
  15. 15.
    Messow, C., Gartner, K., Hackbarth, H., Kangaloo, M., and Lunebrink, L. (1980). Sex differences in kidney morphology and glomerular filtration rate in mice. Contrib Nephrol 19, 51–55.PubMedGoogle Scholar
  16. 16.
    Noonan, W. T. and Banks, R. O. (2000). Renal function and glucose transport in male and female mice with diet-induced type II diabetes mellitus. Proc Soc Exp Biol Med 225, 221–230.PubMedCrossRefGoogle Scholar
  17. 17.
    Hackbarth, H. and Hackbarth, D. (1981). Genetic analysis of renal function in mice. 1. Glomerular filtration rate and its correlation with body and kidney weight. Lab Anim 15, 267–272.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen, M. P., Clements, R. S., Hud, E., Cohen, J. A., and Ziyadeh, F. N. (1996). Evolution of renal function abnormalities in the db/db mouse that parallels the development of human diabetic nephropathy. Exp Nephrol 4, 166–171.PubMedGoogle Scholar
  19. 19.
    Gartner, K. (1978). Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (c57bl/6j db/db and c57bl/ksj db/db). Diabetologia 15, 59–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Breyer, M. D., Bottinger, E., Brosius, F. C., 3rd, Coffman, T. M., Harris, R. C., Heilig, C. W., and Sharma, K. (2005). Mouse models of diabetic nephropathy. J Am Soc Nephrol 16, 27–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Dunn, S. R., Qi, Z., Bottinger, E. P., Breyer, M. D., and Sharma, K. (2004). Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney Int 65, 1959–1967.PubMedCrossRefGoogle Scholar
  22. 22.
    Jung, K., Wesslau, C., Priem, F., Schreiber, G., and Zubek, A. (1987). Specific creatinine determination in laboratory animals using the new enzymatic test kit “Creatinine-PAP.” J Clin Chem Clin Biochem 25, 357–361.PubMedGoogle Scholar
  23. 23.
    Takahashi, N., Boysen, G., Li, F., Li, Y., and Swenberg, J. A. (2007). Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. Kidney Int 71, 266–271.PubMedCrossRefGoogle Scholar
  24. 24.
    Haines, H. and Farmer, J. N. (1991). Glomerular filtration rate and plasma solutes in BALB/c mice infected with Plasmodium berghei. Parasitol Res 77, 411–414.PubMedCrossRefGoogle Scholar
  25. 25.
    Aizman, R., Asher, C., Fuzesi, M., Latter, H., Lonai, P., Karlish, S. J., and Garty, H. (2002). Generation and phenotypic analysis of CHIF knockout mice. Am J Physiol Renal Physiol 283, F569–577.PubMedGoogle Scholar
  26. 26.
    Park, K. M., Chen, A., and Bonventre, J. V. (2001). Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem 276, 11870–11876.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang, W., Jittikanont, S., Falk, S. A., Li, P., Feng, L., Gengaro, P. E., Poole, B. D., Bowler, R. P., Day, B. J., Crapo, J. D., and Schrier, R. W. (2003). Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 284, F532–537.PubMedGoogle Scholar
  28. 28.
    O’Donnell, M. P., Burne, M., Daniels, F., and Rabb, H. (2002). Utility and limitations of serum creatinine as a measure of renal function in experimental renal ischemia-reperfusion injury. Transplantation 73, 1841–1844.PubMedCrossRefGoogle Scholar
  29. 29.
    Kawada, N., Imai, E., Karber, A., Welch, W. J., and Wilcox, C. S. (2002). A mouse model of angiotensin II slow pressor response: role of oxidative stress. J Am Soc Nephrol 13, 2860–2868.PubMedCrossRefGoogle Scholar
  30. 30.
    Cervenka, L., Mitchell, K. D., and Navar, L. G. (1999). Renal function in mice: effects of volume expansion and angiotensin II. J Am Soc Nephrol 10, 2631–2636.PubMedGoogle Scholar
  31. 31.
    Luippold, G., Pech, B., Schneider, S., Osswald, H., and Muhlbauer, B. (2002). Age dependency of renal function in CD-1 mice. Am J Physiol Renal Physiol 282, F886–890.PubMedGoogle Scholar
  32. 32.
    Cullen-McEwen, L. A., Kett, M. M., Dowling, J., Anderson, W. P., and Bertram, J. F. (2003). Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41, 335–340.PubMedCrossRefGoogle Scholar
  33. 33.
    Wulff, P., Vallon, V., Huang, D. Y., Volkl, H., Yu, F., Richter, K., Jansen, M., Schlunz, M., Klingel, K., Loffing, J., Kauselmann, G., Bosl, M. R., Lang, F., and Kuhl, D. (2002). Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 110, 1263–1268.PubMedGoogle Scholar
  34. 34.
    Brown, R., Ollerstam, A., Johansson, B., Skott, O., Gebre-Medhin, S., Fredholm, B., and Persson, A. E. (2001). Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281, R1362–1367.PubMedGoogle Scholar
  35. 35.
    Lorenz, J. N., Baird, N. R., Judd, L. M., Noonan, W. T., Andringa, A., Doetschman, T., Manning, P. A., Liu, L. H., Miller, M. L., and Shull, G. E. (2002). Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 277, 37871–37880.PubMedCrossRefGoogle Scholar
  36. 36.
    Sun, D., Samuelson, L. C., Yang, T., Huang, Y., Paliege, A., Saunders, T., Briggs, J., and Schnermann, J. (2001). Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98, 9983–9988.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhonghua Qi
    • 1
  • Matthew D. Breyer
    • 2
  1. 1.Division of NephrologyVanderbilt UniversityNashvilleUSA
  2. 2.Division of NephrologyVanderbilt UniversityNashvilleUSA

Personalised recommendations