Cancer Genomics and Proteomics pp 135-152

Part of the Methods in Molecularbiology™ book series (MIMB, volume 383) | Cite as

Chromatin Immunoprecipitation Assays

Molecular Analysis of Chromatin Modification and Gene Regulation
  • Piyali Dasgupta
  • Srikumar P. Chellappan


Gene expression pattern in cancer cells differ significantly from their normal counter parts, owing to mutations in oncogenes and tumor suppressor genes, their downstream targets, or owing to increased proliferation, and altered apoptotic potential. Various microarray based techniques have been widely utilized to study the differential expression of genes in cancer in recent years. Along with this, attempts have been made to study the transcriptional regulatory mechanisms and chromatin modifications facilitating such differential gene expression. One of the widely used assays for this purpose is the chromatin immunoprecipitation (ChIP) assay, which enables the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. This has been of immense value, because ChIP assays can provide a snapshot of the regulatory mechanisms involved in the expression of a single gene, or a variety of genes at the same time. This review article outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors, based on the experience in studying E2F1 and histone modifications as well as other published protocols. In addition, the use of ChIP assays to carry out global analysis of transcription factor recruitment is also addressed.

Key Words

Acetylation ChIP E2F histone modification immunoprecipitation microarrays 


  1. 1.
    Hecht, A. and Grunstein, M. (1999) Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 304, 399–414.CrossRefPubMedGoogle Scholar
  2. 2.
    Luo, R. X. and Dean, D. C. (1999) Chromatin remodeling and transcriptional regulation. J. Natl. Cancer Inst. 91, 1288–1294.CrossRefPubMedGoogle Scholar
  3. 3.
    Kirmizis, A. and Farnham, P. J. (2004) Genomic approaches that aid in the identification of transcription factor target genes. Exp. Biol. Med. (Maywood) 229, 705–721.Google Scholar
  4. 4.
    Johnson, K. D. and Bresnick, E. H. (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26, 27–36.CrossRefPubMedGoogle Scholar
  5. 5.
    Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349–352.CrossRefPubMedGoogle Scholar
  6. 6.
    Grunstein, M. (1998) Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328.CrossRefPubMedGoogle Scholar
  7. 7.
    Harbour, J. W. and Dean, D. C. (2001) Corepressors and retinoblastoma protein function. Curr. Top. Microbiol. Immunol. 254, 137–144.PubMedGoogle Scholar
  8. 8.
    Bernstein, B. E., Humphrey, E. L., Liu, C. L., and Schreiber, S. L. (2004) The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol. 376, 349–360.CrossRefPubMedGoogle Scholar
  9. 9.
    Umlauf, D., Goto, Y., and Feil, R. (2004) Site-specific analysis of histone methylation and acetylation. Methods Mol. Biol. 287, 99–120.PubMedGoogle Scholar
  10. 10.
    Spencer, V. A., Sun, J. M., Li, L., and Davie, J. R. (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Stallcup, M. R. (2001) Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20, 3014–3020.CrossRefPubMedGoogle Scholar
  12. 12.
    Kuo, M. H. and Allis, C. D. (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20, 615–626.CrossRefPubMedGoogle Scholar
  13. 13.
    Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang, Y., Fischle, W., Cheung, W., Jacobs, S., Khorasanizadeh, S., and Allis, C. D. (2004) Beyond the double helix: writing and reading the histone code. Novartis Found Symp. 259, 3–17; discussion 17–21, 163–169.CrossRefPubMedGoogle Scholar
  15. 15.
    Agalioti, T., Chen, G., and Thanos, D. (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392.CrossRefPubMedGoogle Scholar
  16. 16.
    Turner, B. M. (2000) Histone acetylation and an epigenetic code. BioEssays 22, 836–845.CrossRefPubMedGoogle Scholar
  17. 17.
    Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Kouzarides, T. (2002) Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209.CrossRefPubMedGoogle Scholar
  19. 19.
    Litt, M. D., Simpson, M., Recillas-Targa, F., Prioleau, M. N., and Felsenfeld, G. (2001) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20, 2224–2235.CrossRefPubMedGoogle Scholar
  20. 20.
    Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D., and Felsenfeld, G. (2001) Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455.CrossRefPubMedGoogle Scholar
  21. 21.
    Weinmann, A. S. and Farnham, P. J. (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104.CrossRefPubMedGoogle Scholar
  23. 23.
    Hebbes, T. R., Clayton, A. L., Thorne, A. W., and Crane-Robinson, C. (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830.PubMedGoogle Scholar
  24. 24.
    Dasgupta, P., Sun, J., Wang, S., et al. (2004) Disruption of the Rb-Raf-1 interaction inhibits tumor growth and angiogenesis. Mol. Cell Biol. 24, 9527–9541.CrossRefPubMedGoogle Scholar
  25. 25.
    Dasgupta, P., Betts, V., Rastogi, S., et al. (2004) Direct binding of apoptosis signal-regulating kinase 1 to retinoblastoma protein: novel links between apoptotic signaling and cell cycle machinery. J. Biol. Chem. 279, 38,762–38,769.CrossRefPubMedGoogle Scholar
  26. 26.
    Fusaro, G., Dasgupta, P., Rastogi, S., Joshi, B., and Chellappan, S. P. (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 278, 47,853–47,861.CrossRefPubMedGoogle Scholar
  27. 27.
    Joshi, B., Ordonez-Ercan, D., Dasgupta, P., and Chellappan, S. (2004) Induction of human metallothionein 1g promoter by VEGF and heavy metals: differential involvement of E2F and MTF transcription factors. Oncogene 24, 2204–2217.CrossRefGoogle Scholar
  28. 28.
    Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q., and Farnham, P. J. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol. 21, 6820–6832.CrossRefPubMedGoogle Scholar
  29. 29.
    Wells, J., Graveel, C. R., Bartley, S. M., Madore, S. J., and Farnham, P. J. (2002) The identification of E2F1-specific target genes. Proc. Natl. Acad. Sci. USA 99, 3890–3895.CrossRefPubMedGoogle Scholar
  30. 30.
    Wells, J. and Farnham, P. J. (2002) Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26, 48–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M., and Farnham, P. J. (1998) c-Myc target gene specificity is determined by a post-DNAbinding mechanism. Proc. Natl. Acad. Sci. USA 95, 13,887–13,892.CrossRefPubMedGoogle Scholar
  32. 32.
    Boyd, K. E. and Farnham, P. J. (1999) Coexamination of site-specific transcription factor binding and promoter activity in living cells. Mol. Cell Biol. 19, 8393–8399.PubMedGoogle Scholar
  33. 33.
    Harbour, J. W. and Dean, D. C. (2000) Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689.CrossRefPubMedGoogle Scholar
  34. 34.
    Dorbic, T. and Wittig, B. (1986) Isolation of oligonucleosomes from active chromatin using HMG17-specific monoclonal antibodies. Nucleic Acids Res. 14, 3363–3376.CrossRefPubMedGoogle Scholar
  35. 35.
    Dorbic, T. and Wittig, B. (1987) Chromatin from transcribed genes contains HMG17 only downstream from the starting point of transcription. EMBO J. 6, 2393–2399.PubMedGoogle Scholar
  36. 36.
    Thorne, A. W., Myers, F. A., and Hebbes, T. R. (2004) Native chromatin immunoprecipitation. Methods Mol. Biol. 287, 21–44.PubMedGoogle Scholar
  37. 37.
    Buck, M. J. and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.CrossRefPubMedGoogle Scholar
  38. 38.
    Robyr, D. and Grunstein, M. (2003) Genomewide histone acetylation microarrays. Methods 31, 83–89.CrossRefPubMedGoogle Scholar
  39. 39.
    Ren, B. and Dynlacht, B. D. (2004) Use of chromatin immunoprecipitation ssays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol. 376, 304–315.CrossRefPubMedGoogle Scholar
  40. 40.
    Roh, T. Y., Ngau, W. C., Cui, K., Landsman, D., and Zhao, K. (2004) High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013–1016.CrossRefPubMedGoogle Scholar
  41. 41.
    Strahl-Bolsinger, S., Hecht, A., Luo, K., and Grunstein, M. (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Morimoto, R. I. (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110, 281–284.CrossRefPubMedGoogle Scholar
  43. 43.
    Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A., and Brown, M. (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852.CrossRefPubMedGoogle Scholar
  44. 44.
    Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor, New York: 617 pp.Google Scholar
  45. 45.
    Farnham, P. J. (2002) In vivo assays to examine transcription factor localization and target gene specificity. Methods 26, 1–2.CrossRefPubMedGoogle Scholar
  46. 46.
    Kirmizis, A., Bartley, S. M., Kuzmichev, A., et al. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18, 1592–1605.CrossRefPubMedGoogle Scholar
  47. 47.
    Forsberg, E. C., Downs, K. M., and Bresnick, E. H. (2000) Direct interaction of NF-E2 with hypersensitive site 2 of the β-globin locus control region in living cells. Blood 96, 334–339.PubMedGoogle Scholar
  48. 48.
    Chaya, D. and Zaret, K. S. (2004) Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol. 376, 361–372.CrossRefPubMedGoogle Scholar
  49. 49.
    Im, H., Grass, J. A., Johnson, K. D., Boyer, M. E., Wu, J., and Bresnick, E. H. (2004) Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol. Biol. 284, 129–146.PubMedGoogle Scholar
  50. 50.
    Blais, A. and Dynlacht, B. D. (2004) Hitting their targets: an emerging picture of E2F and cell cycle control. Curr. Opin. Genet. Dev. 14, 527–532.CrossRefPubMedGoogle Scholar
  51. 51.
    Skowronska-Krawczyk, D., Ballivet, M., Dynlacht, B. D., and Matter, J. M. (2004) Highly specific interactions between bHLH transcription factors and chromatin during retina development. Development 131, 4447–4454.CrossRefPubMedGoogle Scholar
  52. 52.
    Elefant, F., Cooke, N. E., and Liebhaber, S. A. (2000) Targeted recruitment of histone acetyltransferase activity to a locus control region. J. Biol. Chem. 275, 13,827–13,834.CrossRefPubMedGoogle Scholar
  53. 53.
    Johnson, K. D., Christensen, H. M., Zhao, B., and Bresnick, E. H. (2001) Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Mol. Cell 8, 465–471.CrossRefPubMedGoogle Scholar
  54. 54.
    Kondo, Y., Shen, L., Yan, P. S., Huang, T. H., and Issa, J. P. (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc. Natl. Acad. Sci. USA 101, 7398–7403.CrossRefPubMedGoogle Scholar
  55. 55.
    Nielsen, S. J., Schneider, R., Bauer, U. M., et al. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565.CrossRefPubMedGoogle Scholar
  56. 56.
    Oberley, M. J., Tsao, J., Yau, P., and Farnham, P. J. (2004) High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol. 376, 315–334.CrossRefPubMedGoogle Scholar
  57. 57.
    Ren, B., Cam, H., Takahashi, Y., et al. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16, 245–256.CrossRefPubMedGoogle Scholar
  58. 58.
    Tse, C., Sera, T., Wolffe, A. P., and Hansen, J. C. (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell Biol. 18, 4629–4638.PubMedGoogle Scholar
  59. 59.
    Noma, K., Allis, C. D., and Grewal, S. I. (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155.CrossRefPubMedGoogle Scholar
  60. 60.
    Gregory, R. I., Randall, T. E., Johnson, C. A., et al. (2001) DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol. Cell Biol. 21, 5426–5436.CrossRefPubMedGoogle Scholar
  61. 61.
    Gregory, R. I. and Feil, R. (1999) Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity. Nucleic Acids Res. 27, E32.CrossRefPubMedGoogle Scholar
  62. 62.
    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.CrossRefPubMedGoogle Scholar
  63. 63.
    Uejima, H., Lee, M. P., Cui, H., and Feinberg, A. P. (2000) Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat. Genet. 25, 375–376.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Piyali Dasgupta
    • 1
  • Srikumar P. Chellappan
    • 1
  1. 1.Drug Discovery Program, Department of Interdisciplinary OncologyH. Lee Moffitt Cancer Center and Research InstituteTampa

Personalised recommendations