Protein Crystallization

  • Champion Deivanayagam
  • William J. Cook
  • Mark R. Walter
Part of the Methods in Molecularbiology™ book series (MIMB, volume 383)


X-ray crystallography is a powerful method for obtaining the three-dimensional structures of biological macromolecules and macromolecular complexes. Improvements in protein production, crystallization, data collection, as well as structure solution and refinement methods have brought the field to the verge of rapid high-throughput genomic scale structure determination. The major bottle neck to this process remains protein production and crystallization. This chapter describes essential information on standard protein production and crystallization methods and ongoing efforts to perform this work using high-throughput robotics.

Key Words

Robotics protein crystallization X-ray diffraction protein structure 


  1. 1.
    Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.CrossRefPubMedGoogle Scholar
  2. 2.
    Lander, E. S., Linton, L. M., Birren, B. C., et al. (2001) International Human Genome Sequencing Consortium: initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefPubMedGoogle Scholar
  3. 3.
    Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 546, 563–567.CrossRefPubMedGoogle Scholar
  4. 4.
    Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.CrossRefPubMedGoogle Scholar
  5. 5.
    Gibbs, R. A., Weinstock, G. M., Metzker, M. L., et al. (2004) Rat Genome Sequencing Project Consortium: genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521.CrossRefPubMedGoogle Scholar
  6. 6.
    Waterston, R. H., Lindblad-Toh, K., Birney, E., et al. (2002) Mouse Genome Sequencing Consortium: initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.CrossRefPubMedGoogle Scholar
  7. 7.
    Holt, R. A., Subramanian, G. M., Halpern, A., et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–149.CrossRefPubMedGoogle Scholar
  8. 8.
    Cole, S. T., Brosch, R., Parkhill, J., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu, J. and Rost, B. (2002) Target space for structural genomics revisited. Bioinformatics 18, 922–933.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu, J. and Rost, B. (2004) CHOP proteins into structural domain-like fragments. Proteins 55, 678–688.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, J., Hegyi, H., Acton, T. B., Montelione, G. T., and Rost, B. (2004) Automatic target selection for structural genomics on eukaryotes. Proteins 56, 188–200.CrossRefPubMedGoogle Scholar
  12. 12.
    Portugaly, E., Kifer, I., and Linial, M. (2002) Selecting targets for structural determination by navigating in a graph of protein families. Bioinformatics 18, 899–907.CrossRefPubMedGoogle Scholar
  13. 13.
    Portugaly, E. and Linial, M. (2000) Estimating the probability for a protein to have a new fold: a statistical computational model. Proc. Natl. Acad. Sci. USA 97, 5161–5166.CrossRefPubMedGoogle Scholar
  14. 14.
    Gilliland, G. L., Tung, M., and Ladner, J. (1996) The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive. J. Res. Natl. Inst. Stand Technol. 101, 309–320.PubMedGoogle Scholar
  15. 15.
    Cudney, R. (1994) Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr. D. Biol. Crystallogr. 50, 414–423.CrossRefPubMedGoogle Scholar
  16. 16.
    Jancarik, J. A. K. S. (1991) Sparse Matrix Sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409.CrossRefGoogle Scholar
  17. 17.
    Mancia, F., Patel, S. D., Rajala, M. W., et al. (2004) Optimization of protein production in mammalian cells with a coexpressed fluorescent marker. Structure (Camb) 12, 1355–1360.CrossRefGoogle Scholar
  18. 18.
    Hendrickson, W. A., Horton, J. R., and LeMaster, D. M. (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672.PubMedGoogle Scholar
  19. 19.
    Lesley, S. A., Kuhn, P., Godzik, A., et al. (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99, 11,664–11,669.CrossRefPubMedGoogle Scholar
  20. 20.
    Yee, A., Chang, X., Pineda-Lucena, A., et al. (2002) An NMR approach to structural proteomics. Proc. Natl. Acad. Sci. USA 99, 1825–1830.CrossRefPubMedGoogle Scholar
  21. 21.
    Boettner, M., Prinz, B., Holz, C., Stahl, U., and Lang, C. (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J. Biotechnol. 99, 51–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Bailey, C. G., Tait, A. S., and Sunstrom, N. A. (2002) High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol. Bioeng. 80, 670–676.CrossRefPubMedGoogle Scholar
  23. 23.
    Berger, I., Fitzgerald, D. J., and Richmond, T. J. (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22, 1583–1587.CrossRefPubMedGoogle Scholar
  24. 24.
    Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533.PubMedGoogle Scholar
  25. 25.
    Song, J. J., Liu, J., Tolia, N. H., et al. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032.CrossRefPubMedGoogle Scholar
  26. 26.
    Smyth, D. R., Mrozkiewicz, M. K., McGrath, W. J., Listwan, P., and Kobe, B. (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 12, 1313–1322.CrossRefPubMedGoogle Scholar
  27. 27.
    Jenny, R. J., Mann, K. G., and Lundblad, R. L. (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr. Purif. 31, 1–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Kapust, R. B. and Waugh, D. S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674.CrossRefPubMedGoogle Scholar
  29. 29.
    Routzahn, K. M. and Waugh, D. S. (2002) Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J. Struct. Funct. Genomics 2, 83–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Knaust, R. K. and Nordlund, P. (2001) Screening for soluble expression of recombinant proteins in a 96-well format. Anal. Biochem. 297, 79–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Braun, P., Hu, Y., Shen, B., et al. (2002) Proteome-scale purification of human proteins from bacteria. Proc. Natl. Acad. Sci. USA 99, 2654–2659.CrossRefPubMedGoogle Scholar
  32. 32.
    Chance, M. R., Bresnick, A. R., Burley, S. K., et al. (2002) Structural genomics: a pipeline for providing structures for the biologist. Protein Sci. 11, 723–738.CrossRefPubMedGoogle Scholar
  33. 33.
    Page, R., Moy, K., Sims, E. C., et al. (2004) Scalable high-throughput micro-expression device for recombinant proteins. Biotechniques 37, 364, 366, 368 passim.PubMedGoogle Scholar
  34. 34.
    Lesley, S. A. (2001) High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 22, 153–160.CrossRefGoogle Scholar
  35. 35.
    Choi, K. H., Groarke, J. M., Young, D. C., et al. (2004) Design, expression, and purification of a Flaviviridae polymerase using a high-throughput approach to facilitate crystal structure determination. Protein Sci. 13, 2685–2692.CrossRefPubMedGoogle Scholar
  36. 36.
    Cohen, S. L. and Chait, B. T. (2001) Mass spectrometry as a tool for protein crystallography. Annu. Rev. Biophys. Biomol. Struct. 30, 67–85.CrossRefPubMedGoogle Scholar
  37. 37.
    Stura, E. A., Nermerow, G. R., and Wilson, I. A. (1992) Strategies in the crystallization of glycoproteins and protein complexes. J. Cryst. Growth. 122, 273–285.CrossRefGoogle Scholar
  38. 38.
    Xu, T., Logsdon, N. J., and Walter, M. R. (2004) Crystallization and X-ray diffraction analysis of insect cell derived IL-22. Acta Crystallogr. D. Biol. Crystallogr. D60, 1295–1298.CrossRefGoogle Scholar
  39. 39.
    Josephson, K., McPherson, D. T., and Walter, M. R. (2001) Purification, crystallization and preliminary X-ray diffraction of a complex between IL-10 and soluble IL-10R1. Acta Crystallogr. D. Biol. Crystallogr. 57, 1908–1911.CrossRefPubMedGoogle Scholar
  40. 40.
    Strelkov, S. V., Herrmann, H., and Geisler, N. (2001) Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 306, 773–781.CrossRefPubMedGoogle Scholar
  41. 41.
    Barwell, J. A., Bochkarev, A., Pfuetzner, R. A., et al. (1995) Overexpression, purification, and crystallization of the DNA binding and dimerization domains of the Epstein-Barr virus nuclear antigen 1. J. Biol. Chem. 270, 20,556–20,559.CrossRefPubMedGoogle Scholar
  42. 42.
    Pantazatos, D., Kim, J. S., Klock, H. E., et al. (2004) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc. Natl. Acad. Sci. USA 101, 751–756.CrossRefPubMedGoogle Scholar
  43. 43.
    Harris, L. J., Larson, S. B., Hasel, K. W., Day, J., Greenwood, A., and McPherson, A. (1992) The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360, 369–372.CrossRefPubMedGoogle Scholar
  44. 44.
    Harris, L. J., Skaletsky, E., and McPherson, A. (1998) Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872.CrossRefPubMedGoogle Scholar
  45. 45.
    Kwong, P. D., Wyatt, R., Desjardins, E., et al. (1999) Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274, 4115–4123.CrossRefPubMedGoogle Scholar
  46. 46.
    Grimm, C., Klebe, G., Ficner, R., and Reuter, K. (2000) Screening orthologs as an important variable in crystallization: preliminary X-ray diffraction studies of the tRNA-modifying enzyme S-adenosyl-methionine:tRNA ribosyl transferase/isomerase. Acta Crystallogr. D. Biol. Crystallogr. 56, 484–488.CrossRefPubMedGoogle Scholar
  47. 47.
    Ruf, W., Stura, E. A., LaPolla, R. J., Syed, T., Edgington, T. S., and Wilson I. A. (1992) Purification, sequence and crystallization of an anti-tissue factor Fab and its use for the crystallization of tissue factor. J. Cryst. Growth 122, 253–264.CrossRefGoogle Scholar
  48. 48.
    Stura, E. A., Graille, M. J., and Charbonnier, J. B. (2001) Crystallization of macromolecular complexes: combinatorial complex crystallization. J. Cryst. Growth 232, 573–579.CrossRefGoogle Scholar
  49. 49.
    Josephson, K., Jones, B. C., Walter, L. J., DiGiacomo, R., Indelicato, S. R., and Walter, M. R. (2002) Non-competitive antibody neutralization of IL-10 revealed by protein engineering and X-ray crystallography. Structure 10, 981–987.CrossRefPubMedGoogle Scholar
  50. 50.
    Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659.CrossRefPubMedGoogle Scholar
  51. 51.
    Xiang, S. H., Kwong, P. D., Gupta, R., et al. (2002) Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J. Virol. 76, 9699–9888.Google Scholar
  52. 52.
    Ferre-D’Amare, A. R. and Burley, S. K. (1994) Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure 2, 357–359.CrossRefPubMedGoogle Scholar
  53. 53.
    Bard, J., Ercolani, K., Svenson, K., Olland, A., and Somers, W. (2004) Automated systems for protein crystallization. Methods 34, 329–347.CrossRefPubMedGoogle Scholar
  54. 54.
    Weselak, M., Patch, M. G., Selby, T. L., Knebel, G., and Stevens, R. C. (2003) Robotics for automated crystal formation and analysis. Methods Enzymol. 368, 45–76.CrossRefPubMedGoogle Scholar
  55. 55.
    Cumbaa, C. A., Lauricella, A., Fehrman, N., et al. (2003) Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates. Acta Crystallogr. D. Biol. Crystallogr. 59, 1619–1627.CrossRefPubMedGoogle Scholar
  56. 56.
    DeLucas, L. J., Bray, T. L., Nagy, L., et al. (2003) Efficient protein crystallization. J. Struct. Biol. 142, 188–206.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Champion Deivanayagam
    • 1
  • William J. Cook
    • 2
  • Mark R. Walter
    • 3
  1. 1.Center for Biophysical Sciences and Engineering, Department of Vision SciencesUniversity of Alabama at BirminghamBirmingham
  2. 2.Department of PathologyUniversity of Alabama at BirminghamBirmingham
  3. 3.Department of MicrobiologyUniversity of Alabama in Birmingham-CBSEBirmingham

Personalised recommendations