Reverse Phase Protein Microarrays for Monitoring Biological Responses

  • Virginia Espina
  • Julia D. Wulfkuhle
  • Valerie S. Calvert
  • Emanuel F. PetricoinIII
  • Lance A. Liotta
Part of the Methods in Molecularbiology™ book series (MIMB, volume 383)


Cancer has a genomic and proteomic basis. Genomic information provides information about the somatic genetic changes existing in the tumor that provides a survival advantage driving neoplastic progression. On the other hand, proteomics aids in the identification of dysregulated cellular proteins, including known or novel drug targets, governing cellular survival, proliferation, invasion, and cell death. The clinical utility of reverse phase protein microarrays lies in their ability to generate a map of known cell signaling networks or pathways for an individual patient. This protein network map aids in identifying critical nodes or pathways that may serve as drug targets for individualized or combinatorial therapy. Reverse phase protein microarrays are one of the tools available for profiling the protein molecular pathways in a given cellular sample. This type of microarray can uniquely quantify phosphorylation states of proteins. An entire cellular proteome is immobilized on a substratum with subsequent immunodetection of total and activated forms of cell signaling proteins. The pattern of signal intensity generated by the protein spots can be correlated with biological and clinical information as diagnostic and prognostic indicators.

Key Words

Cancer combinatorial therapy laser capture microdissection microarray molecular profiling protein proteomics tissue heterogeneity 


  1. 1.
    Liotta, L. A., Espina, V., Mehta, A. I., et al. (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3, 317–325.CrossRefPubMedGoogle Scholar
  2. 2.
    Haab, B. B., Dunham M. J., and Brown P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, RESEARCH0004. Epub 2001 Jan 22.Google Scholar
  3. 3.
    Macbeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.PubMedGoogle Scholar
  4. 4.
    Macbeath, G. (2002) Protein microarrays and proteomics. Nat Genet. 32Suppl, 526–532.CrossRefPubMedGoogle Scholar
  5. 5.
    Paweletz, C. P., Charboneau, L., Bichsel, V. E., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu, H. and Snyder, M. (2003) Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Wilson, D. S. and Nock, S. (2003) Recent developments in protein microarray technology. Angew Chem. Int. Ed. Engl. 42, 494–500.CrossRefPubMedGoogle Scholar
  8. 8.
    Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vohringer, C. F., and Joos, T. O. (2002) Protein microarray technology. Trends Biotechnol. 20, 160–166.CrossRefPubMedGoogle Scholar
  9. 9.
    Schaeferling, M., Schiller, S., Paul, H., et al. (2002) Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis 23, 3097–3105.CrossRefPubMedGoogle Scholar
  10. 10.
    Weng, S., Gu, K., Hammond, P. W., et al. (2002) Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology. Proteomics 2, 48–57.CrossRefPubMedGoogle Scholar
  11. 11.
    Petach, H. and Gold, L. (2002) Dimensionality is the issue: use of photoaptamers in protein microarrays. Cur. Opin. Biotechnol. 13, 309–314.CrossRefGoogle Scholar
  12. 12.
    Lal, S. P., Christopherson, R. I., and Dos Remedios, C. G. (2002) Antibody arrays: an embryonic but rapidly growing technology. Drug Discov. Today 7(18 Suppl), S143–S149.CrossRefPubMedGoogle Scholar
  13. 13.
    Humphery-Smith, I., Wischerhoff, E., and Hashimoto, R. (2002) Protein arrays for assessment of target selectivity. Drug Discov. World 4, 17–27.Google Scholar
  14. 14.
    Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., and Litt, G. J. (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol Methods 125(1–2), 279–285.CrossRefPubMedGoogle Scholar
  15. 15.
    Bobrow, M. N., Shaughnessy, K. J., and Litt, G. J. (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods 137, 103–112.CrossRefPubMedGoogle Scholar
  16. 16.
    Hunyady, B., Krempels, K., Harta, G., and Mezey, E. (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J. Histochem. Cytochem. 44, 1353–1362.PubMedGoogle Scholar
  17. 17.
    King, G., Payne, S., Walker, F., and Murray, G. I. (1997) A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J. Pathol. 183, 237–241.CrossRefPubMedGoogle Scholar
  18. 18.
    Petricoin, E., Wulfkuhle, J., Espina, V., and Liotta, L. A. (2004) Clinical proteomics: revolutionizing disease detection and patient tailoring therapy. J. Proteome Res. 3, 209–217.CrossRefPubMedGoogle Scholar
  19. 19.
    Grubb, R. L., Calvert, V. S., Wulkuhle, J. D., et al. (2003) Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 3, 2142–2146.CrossRefPubMedGoogle Scholar
  20. 20.
    Wulfkuhle, J. D., Aquino, J. A., Calvert, V. S., et al. (2003) Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3, 2085–2090.CrossRefPubMedGoogle Scholar
  21. 21.
    Liotta, L. A., Kohn, E. C., and Petricoin, E. F. (2001) Clinical proteomics: personalized molecular medicine. JAMA 286, 2211–2214.CrossRefPubMedGoogle Scholar
  22. 22.
    Petricoin, E. F., Zoon, K. C., Kohn, E. C., Barrett, J. C., and Liotta, L. A. (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov. 1, 683–695.CrossRefPubMedGoogle Scholar
  23. 23.
    Petricoin, E. F. and Liotta, L. A. (2004) Clinical proteomics: application at the bedside. Contrib. Nephrol. 141, 93–103.CrossRefPubMedGoogle Scholar
  24. 24.
    Berggren, K., Steinberg, T. H., Lauber, W. M., et al. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal. Biochem. 276, 129–143.CrossRefPubMedGoogle Scholar
  25. 25.
    Tonkinson, J. L. and Stillman, B. A. (2002) Nitrocellulose: a tried and true polymer finds utility as a postgenomic substrate. Front. Biosci. 7, C1–C12.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Virginia Espina
    • 1
  • Julia D. Wulfkuhle
    • 1
  • Valerie S. Calvert
    • 1
  • Emanuel F. PetricoinIII
    • 1
  • Lance A. Liotta
    • 1
  1. 1.Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassas

Personalised recommendations