Bead-Based Multianalyte Flow Immunoassays

The Cytometric Bead Array System
  • Rudolf Varro
  • Roy Chen
  • Homero Sepulveda
  • John Apgar
Part of the Methods in Molecular Biology book series (MIMB, volume 378)

Abstract

Analytical cytometry has significant potential beyond cellular analysis. The inherent capability of flow cytometers to efficiently discriminate between uniformly sized particles based on their intrinsic properties provides the foundation for multiplex bead assays. The technology can be exploited in designing immunoassays, Western blot-like antibody assays, and nucleic acid hybridization assays. This chapter focuses on immunoassay applications. The multiplex bead assays have recently evolved as a new and increasingly popular area for flow cytometry, becoming a good alternative to enzyme-linked immunosorbent assay for efficient evaluation of panels of analytes. This chapter provides detailed information about two bead platforms, the BD™ Cytometric Bead Array kits and the BD Cytometric Bead Array Flex Set Assays.

Key Words

CBA multiplex bead immunoassays preconfigured kits Flex-Set assays soluble proteins cell signaling proteins cell lysates 

References

  1. 1.
    Carson, R. T. and Vignali, D. A. (1999) Simultaneous quantitation of fifteen cytokines using a multiplexed flow cytometric assay. J. Immunol. Meths. 227, 41–45.CrossRefGoogle Scholar
  2. 2.
    Morgan, E., Varro, R., Sepulveda, H., et al. (2004) Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin. Immunol. 110, 252–266.CrossRefPubMedGoogle Scholar
  3. 3.
    Stall, A., Sun, Q., Varro, R., et al. (1998) A single tube flow cytometric multibead assay for isotyping mouse monoclonal antibodies. Abstract 1877, Experimental Biology Meeting.Google Scholar
  4. 4.
    Lund-Johansen, F., Davis, K., Bishop, J. E., and Malefyt, R. de W. (2000) Flow cytometric analysis of immunoprecipitates: high-throughput analysis of protein phosphorylation and protein-protein interactions. Cytometry 39, 250–259.CrossRefPubMedGoogle Scholar
  5. 5.
    Fulwyler, M. J., McHugh, T. M., Schwadron, R., et al. (1988) Immunoreactive bead (IRB) assay for the quantitative and simultaneous flow cytometric detection of multiple soluble analytes. Cytometry 2, 19.Google Scholar
  6. 6.
    McHugh, T. M. (1994) How microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes. Methods Cell Biol. 42, 575–595.CrossRefPubMedGoogle Scholar
  7. 7.
    Camilla, C., Defoort, J. R, Delaage, M., et al. (1998) A new flow cytometry-based multi-assay system. 1. Application to cytokine immunoassays. Cytometry 8, 132.Google Scholar
  8. 8.
    Chen, R., Lowe, L., Wilson, J. D., et al. (1999) Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clin. Chem. 9, 1693–1694.Google Scholar
  9. 9.
    Fulton, R. J., McDade, R. L., Smith, P. L., Kienker, L. J., and Kettman, J. R. (1997) Advanced multiplexed analysis with the FlowMetrix system. Clin. Chem. 43, 1749–1756.PubMedGoogle Scholar
  10. 10.
    McHugh, T. M., Viele, M. K., Chase, E. S., and Recktenwald, D. J. (1997) The sensitive detection and quantitation of antibody to HCV using a microsphere-based immunoassay and flow cytometry. Cytometry 29, 106–112.CrossRefPubMedGoogle Scholar
  11. 11.
    Faucher, S., Martel, A., Sherring, A., et al. (2004) Protein bead array for the detection of HIV-1 antibodies from fresh plasma and dried-blood-spot specimens. Clin. Chem. 50, 1250–1253.CrossRefPubMedGoogle Scholar
  12. 12.
    Khan, I. H., Kendall, L. V., Ziman, M., et al. (2005) Simultaneous serodetection of 10 highly prevalent mouse infectious pathogens in a single reaction by multiplex analysis. Clin. Diagn. Lab. Immunol. 12, 513–519.PubMedGoogle Scholar
  13. 13.
    Cook, E. B., Stahl, J. L., Lowe, L., et al. (2001) Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. non-allergics. J. Immunol. Meths. 254, 109–118.CrossRefGoogle Scholar
  14. 14.
    Sonoda, S., Uchino, E., Nakao, K., and Sakamoto, T. (2006) Inflammatory cytokine of basal and reflex tears analysed by multicytokine assay. British J. Ophthalmology 90, 120–122.CrossRefGoogle Scholar
  15. 15.
    Tárnok, A., Hambsch, J., Chen, R., and Varro, R. (2003) Cytometric bead array to measure six cytokines in twenty-five microliters of serum Clin. Chem. 49, 1000–1002.CrossRefPubMedGoogle Scholar
  16. 16.
    Hodge, G., Hodge, S., Haslam, R., et al. (2004) Rapid simultaneous measurement of multiple cytokines using 100 microliter sample volumes—association with neonatal sepsis. Clin. Exp. Immunol. 137, 402–407.CrossRefPubMedGoogle Scholar
  17. 17.
    Jatta, K., Wågsäter, D., Norgren, L., Stenberg, B., and Sirsjö, A. (2005) Lipopoly-saccharide-induced cytokine and chemokine expression in human carotid lesions. J. Vasc. Res. 42, 266–271.CrossRefPubMedGoogle Scholar
  18. 18.
    Peiris, J. S., Yu, W. C., Leung, C. W., et al. (2004) Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617–619.CrossRefPubMedGoogle Scholar
  19. 19.
    Rodriguez-Caballero, A., Garcia-Montero, A. C., Bueno, C., et al. (2004) A new simple whole blood flow cytometry based method for simultaneous identification of activated cells and quantitative evaluation of cytokines released during activation. Laboratory Investigation 84, 1387–1398.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen, L., Apgar, I, Huynh, L., et al. (2005) ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105, 2036–2041.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Rudolf Varro
    • 1
  • Roy Chen
    • 1
  • Homero Sepulveda
    • 1
  • John Apgar
    • 2
  1. 1.Department of Applications DevelopmentBD BiosciencesSan Jose
  2. 2.Cell Signaling ResearchBD BiosciencesSan Diego

Personalised recommendations