Advertisement

Whole-Genome Detection of Conditionally Essential and Dispensable Genes in Escherichia coli via Genetic Footprinting

  • Michael D. Scholle
  • Svetlana Y. Gerdes
Part of the Methods in Molecular Biology™ book series (MIMB, volume 416)

Abstract

We present a whole-genome approach to genetic footprinting in Escherichia coli using Tn5-based transposons to determine gene essentiality. A population of cells is mutagenized and subjected to outgrowth under selective conditions. Transposon insertions in the surviving mutants are detected using nested polymerase chain reaction (PCR), agarose gel electrophoresis, and software-assisted PCR product size determination. Genomic addresses of these inserts are then mapped onto the E. coli genome sequence based on the PCR product lengths and the addresses of the corresponding genome-specific primers. Gene essentiality conclusions were drawn based on a semiautomatic analysis of the number and relative positions of inserts retained within each gene after selective outgrowth.

Key Words

dispensable genes E. coli essential genes genetic footprinting genome Tn5 transposome transposon mapping transposon mutagenesis 

References

  1. 1.
    Smith, V., Botstein, D., and Brown, P. O. (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc. Natl. Acad. Sci. U.S.A. 92, 6479–6483.CrossRefPubMedGoogle Scholar
  2. 2.
    Smith, V., Chou, K. N., Lashkari, D., Botstein, D., and Brown, P. O. (1996) Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069–2074.CrossRefPubMedGoogle Scholar
  3. 3.
    Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., et al. (1999) Global transposon mutagenesis and a minimal mycoplasma genome. Science 286, 2165–2169.CrossRefPubMedGoogle Scholar
  4. 4.
    Reich, K. A., Chovan, L., and Hessler, P. (1999) Genome scanning in Haemophilus influenzae for identification of essential genes. J. Bacteriol. 181, 4961–4968.PubMedGoogle Scholar
  5. 5.
    Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N., and Mekalanos, J. J. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99, 966–971.CrossRefPubMedGoogle Scholar
  6. 6.
    Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 98, 12712–12717.CrossRefPubMedGoogle Scholar
  7. 7.
    Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989–12994.CrossRefPubMedGoogle Scholar
  9. 9.
    Wong, S. M., and Mekalanos, J. J. (2000) Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97, 10191–10196.CrossRefPubMedGoogle Scholar
  10. 10.
    Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103, 2833–2838.CrossRefPubMedGoogle Scholar
  11. 11.
    Jenks, P. J., Chevalier, C., Ecobichon, C., and Labigne, A. (2001) Identification of nonessential Helicobacter pylori genes using random mutagenesis and loop amplification. Res. Microbiol. 152, 725–734.CrossRefPubMedGoogle Scholar
  12. 12.
    Kwon, Y. M., Kubena, L. F., Nisbet, D. J., and Ricke, S. C. (2003) Isolation of Salmonella typhimurium Tn5 mutants defective for survival on egg shell surface using transposon footprinting. J. Environ. Sci. Health B 38, 103–109.CrossRefPubMedGoogle Scholar
  13. 13.
    Badarinarayana, V., Estep, P. W. 3rd, Shendure, J., Edwards, J., Tavazoie, S., Lam, F., and Church, G. M. (2001) Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerdes, S. Y., Scholle, M. D., D’Souza, M., Bernal, A., Baev, M. V., Farrell, M., et al. 2002. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J. Bacteriol. 184, 4555–4572.CrossRefPubMedGoogle Scholar
  15. 15.
    Hare, R. S., Walker, S. S., Dorman, T. E., Greene, J. R., Guzman, L. M., Kenney, T. J., et al. (2001) Genetic footprinting in bacteria. J. Bacteriol. 183, 1694–1706.CrossRefPubMedGoogle Scholar
  16. 16.
    Winterberg, K. M., Luecke, J., Bruegl, A. S., and Reznikoff, W. S. (2005) Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl. Environ. Microbiol. 71, 451–459.CrossRefPubMedGoogle Scholar
  17. 17.
    Gerdes, S., Scholle, M., Campbell, J., Balazsi, G., Ravasz, E., Daugherty, M., et al. (2003). Experimental determination and system-level analysis of essential genes in E. coli MG1655. J. Bacteriol. 185, 5673–5684.CrossRefPubMedGoogle Scholar
  18. 18.
    Hamer, L., DeZwaan, T. M., Montenegro-Chamorro, M. V., Frank, S. A., and Hamer, J. E. (2001) Recent advances in large-scale transposon mutagenesis. Curr. Opin. Chem. Biol. 5, 67–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Hayes, F. (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37, 3–29.CrossRefPubMedGoogle Scholar
  20. 20.
    Haapa, S., Taira, S., Heikkinen, E., and Savilahti, E. (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27, 2777–2784.CrossRefPubMedGoogle Scholar
  21. 21.
    Maekawa, T., Yanagihara, K., and Ohtsubo, E. (1996) A cell-free system of Tn3 transposition and transposition immunity. Genes Cells 1, 1007–1016.CrossRefPubMedGoogle Scholar
  22. 22.
    Maekawa, T., Yanagihara, K., and Ohtsubo, E. (1996) Specific nicking at the 3′ ends of the terminal inverted repeat sequences in transposon Tn3 by transposase and an E. coli protein ACP. Genes Cells 1, 1017–1030.CrossRefPubMedGoogle Scholar
  23. 23.
    Goryshin, I. Y., and Reznikoff, W. S. (1998) Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374.CrossRefPubMedGoogle Scholar
  24. 24.
    Reznikoff, W. S., Goryshin, I. Y., and Jendrisak, J. J. (2004) Tn5 as a molecular genetics tool: In vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol. Biol. 260, 83–96.PubMedGoogle Scholar
  25. 25.
    Bainton, R. J., Kubo, K. M., Feng, J. N., and Craig, N. L. (1993) Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72, 931–943.CrossRefPubMedGoogle Scholar
  26. 26.
    Chalmers, R. M., and Kleckner, N. (1994) Tn10/IS10 transposase purification, activation, and in vitro reaction. J. Biol. Chem. 269, 8029–8035.PubMedGoogle Scholar
  27. 27.
    Griffin, T. J. T., Parsons, L., Leschziner, A. E., DeVost, J., Derbyshire, K. M., and Grindley, N. D. (1999) In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27, 3859–3865.CrossRefPubMedGoogle Scholar
  28. 28.
    Devine, S. E., and Boeke, J. D. (1994) Efficient integration of Artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res. 22, 3765–3772.CrossRefPubMedGoogle Scholar
  29. 29.
    Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J., and Robertson, H. M. (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 96, 11428–11433.CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffman, L. M., Jendrisak, J. J., Meis, R. J., Goryshin, I. Y., and Reznikoff, W. S. (2000) Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 108, 19–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Goryshin, I. Y., Jendrisak, J., Hoffman, L. M., Meis, R., and Reznikoff, W. S. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97–100.CrossRefPubMedGoogle Scholar
  32. 32.
    Butterfield, Y.S., Marra, M.A., Asano, J.K., Chan, S.Y., Guin, R., Krzywinski, M.I., et al. (2002) An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. Nucleic Acids Res. 30, 2460–2468.CrossRefPubMedGoogle Scholar
  33. 33.
    Bhasin, A., Goryshin, I. Y., Steiniger-White, M., York, D., and Reznikoff, W. S. (2000) Characterization of a Tn5 pre-cleavage synaptic complex. J. Mol. Biol. 302, 49–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Akerley, B. J., Rubin, E. J., Camilli, A., Lampe, D. J., Robertson, H. M., and Mekalanos, J. J. (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 95, 8927–8932.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou, M., Bhasin, A., and Reznikoff, W. S. (1998) Molecular genetic analysis of transposase-end DNA sequence recognition: cooperativity of three adjacent base-pairs in specific interaction with a mutant Tn5 transposase. J. Mol. Biol. 276, 913–925.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael D. Scholle
    • 1
  • Svetlana Y. Gerdes
    • 2
  1. 1.Amunix Inc.Mountain View
  2. 2.Fellowship for Interpretation of Genomes (FIG)Burr Ridge

Personalised recommendations