Design and Application of Genome-Scale Reconstructed Metabolic Models

  • Isabel Rocha
  • Jochen Förster
  • Jens Nielsen


In this chapter, the process for the reconstruction of genome-scale metabolic networks is described, and some of the main applications of such models are illustrated. The reconstruction process can be viewed as an iterative process where information obtained from several sources is combined to construct a preliminary set of reactions and constraints. This involves steps such as genome annotation; identification of the reactions from the annotated genome sequence and available literature; determination of the reaction stoichiometry; definition of compartmentation and assignment of localization; determination of the biomass composition; measurement, calculation, or fitting of energy requirements; and definition of additional constraints. The reaction and constraint sets, after debugging, may be integrated into a stoichiometric model that can be used for simulation using tools such as Flux Balance Analysis (Section 3.8). From the flux distributions obtained, physiologic parameters such as growth yields or minimal medium components can be calculated, and their distance from similar experimental data provides a basis from where the model may need to be improved.

Key Words

computer simulation fluxome analysis genome annotation genome-scale reconstruction metabolic engineering metabolic flux analysis metabolic models metabolic networks 


  1. 1.
    Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., and Palsson, B. O. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19, 205–210.CrossRefPubMedGoogle Scholar
  3. 3.
    Edwards, J. S., and Palsson, B. O. (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416.CrossRefPubMedGoogle Scholar
  4. 4.
    Covert, M. W., Schilling, C. H., Famili, I., Edwards, J. S., Goryanin, I. I., Selkov, E., and Palsson, B. O. (2001) Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179–186.CrossRefPubMedGoogle Scholar
  5. 5.
    Patil, K. R., Akesson, M., and Nielsen, J. (2004) Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15, 1–6.CrossRefGoogle Scholar
  6. 6.
    Price, N. D., Papin, J. A., Schilling, C. H., and Palsson, B. O. (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 162–169.CrossRefPubMedGoogle Scholar
  7. 7.
    Notebaart, R. A., van Enckevort, F. H. J., Francke, C., Siezen, R. J., and Teusink, B. (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7, 296.CrossRefPubMedGoogle Scholar
  8. 8.
    Kitano, H., Funahashi, A., Matsuoka, Y., and Oda, K. (2005) Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23, 961–966.CrossRefPubMedGoogle Scholar
  9. 9.
    Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem. Sci. 22, 361–363.CrossRefPubMedGoogle Scholar
  10. 10.
    Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531.CrossRefPubMedGoogle Scholar
  11. 11.
    Segre, D., Zucker, J., Katz, J., Lin, X., D’Haeseleer, P., Rindone, W. P., et al. (2003) From annotated genomes to metabolic flux models and kinetic parameter fitting. OMICS 7, 301–316.CrossRefPubMedGoogle Scholar
  12. 12.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.CrossRefPubMedGoogle Scholar
  13. 13.
    Duarte, N. C., Herrgard, M. J., and Palsson, B. O. (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309.CrossRefPubMedGoogle Scholar
  14. 14.
    Reed, J. L., and Palsson, B. O. (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185, 2692–2699.CrossRefPubMedGoogle Scholar
  15. 15.
    Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley, S. et al. (2002) The MetaCyc Database. Nucleic Acids Res. 30, 56–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Covert, M. W., Schilling, C. H., and Palsson, B. (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Cox, S. J., Levanon, S. S., Bennett, G. N., and San, K. Y. (2005) Genetically constrained metabolic flux analysis. Metab. Eng. 7, 445–456.CrossRefPubMedGoogle Scholar
  18. 18.
    Reed, J. L., Vo, T. D., Schilling, C. H., and Palsson, B. O (2003). An expanded genomescale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54.CrossRefPubMedGoogle Scholar
  19. 19.
    Forster, J., Famili, I., Fu, P., Palsson, B. O., and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253.CrossRefPubMedGoogle Scholar
  20. 20.
    David, H., Akesson, M., and Nielsen, J. (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur. J. Biochem. 270, 4243–4253.CrossRefPubMedGoogle Scholar
  21. 21.
    Varma, A., and Palsson, B. O. (1993) Metabolic capabilities of Escherichia coli: II. optimal growth patterns. J. Theor. Biol. 165, 503–522.CrossRefGoogle Scholar
  22. 22.
    Varma, A., and Palsson, B. O. (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731.PubMedGoogle Scholar
  23. 23.
    Famili, I., Forster, J., Nielsen, J., and Palsson, B. O. (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. U.S.A. 100, 13134–13139.CrossRefPubMedGoogle Scholar
  24. 24.
    Stephanopoulos, G., Aristidou, A., and Nielsen, J. (1998) Metabolic Engineering. San Diego: Academic Press.Google Scholar
  25. 25.
    Christensen, B., and Nielsen, J. (2000) Metabolic network analysis. A powerful tool in metabolic engineering. Adv. Biochem. Eng. Biotechnol. 66, 209–231.PubMedGoogle Scholar
  26. 26.
    Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130.CrossRefPubMedGoogle Scholar
  27. 27.
    Edwards, J. S., and Palsson, B. O. (2000) Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. 16, 927–939.CrossRefPubMedGoogle Scholar
  28. 28.
    Edwards, J. S., and Palsson, B. O. (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1, 1.CrossRefPubMedGoogle Scholar
  29. 29.
    Papp, B., Pal, C., and Hurst, L. D. (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664.CrossRefPubMedGoogle Scholar
  30. 30.
    Segre, D., Vitkup, D., and Church, G. M. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99, 15112–15117.CrossRefPubMedGoogle Scholar
  31. 31.
    Shlomi, T., Berkman, O., and Ruppin, E. (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. U.S.A. 102, 7695–7700.CrossRefPubMedGoogle Scholar
  32. 32.
    Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003) OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657.CrossRefPubMedGoogle Scholar
  33. 33.
    Burgard, A. P., and Maranas, C. D. (2001) Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74, 364–375.CrossRefPubMedGoogle Scholar
  34. 34.
    Pharkya, P., Burgard, A. P., and Maranas, C. D. (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84, 887–899.CrossRefPubMedGoogle Scholar
  35. 35.
    Patil, K. R., Rocha, I., Forster, J., and Nielsen, J. (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6, 308.CrossRefPubMedGoogle Scholar
  36. 36.
    Covert, M. W., and Palsson, B. O. (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064.CrossRefPubMedGoogle Scholar
  37. 37.
    Akesson, M., Forster, J., and Nielsen, J. (2004) Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6, 285–293.CrossRefPubMedGoogle Scholar
  38. 38.
    Ibarra, R. U., Edwards, J. S., and Palsson, B. O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189.CrossRefPubMedGoogle Scholar
  39. 39.
    Price, N. D., Papin, J. A., and Palsson, B. O. (2002) Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. 12, 760–769.PubMedGoogle Scholar
  40. 40.
    Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee, S., Phalakornkule, C., Domach, M. M., and Grossmann, I. E. (2000) Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comput. Chem. Eng. 24, 711–716.CrossRefGoogle Scholar
  42. 42.
    Schilling, C. H., Letscher, D., and Palsson, B. O. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248.CrossRefPubMedGoogle Scholar
  43. 43.
    Edwards, J. S., and Palsson, B. O. (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. U.S.A. 97, 5528–5533.CrossRefPubMedGoogle Scholar
  44. 44.
    Schilling, C. H., Covert, M. W., Famili, I., Church, G. M., Edwards, J. S., and Palsson, B. O. (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184, 4582–4593.CrossRefPubMedGoogle Scholar
  45. 45.
    Thiele, I., Vo, T. D., Price, N. D., and Palsson, B. O. (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single-and double-deletion mutants. J. Bacteriol. 187, 5818–5830.CrossRefPubMedGoogle Scholar
  46. 46.
    Kuepfer, L., Sauer, U., and Blank, L. M. (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430.CrossRefPubMedGoogle Scholar
  47. 47.
    Yeh, W., Hanekamp, T., Tsoka, S., Karp, P. D., and Altman, R. B. (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924.CrossRefPubMedGoogle Scholar
  48. 48.
    Tsoka, S., Simon, D., and Ouzounis, C. A. (2004) Automated metabolic reconstruction for Methanococcus jannaschii. Archaea 1, 223–229.CrossRefPubMedGoogle Scholar
  49. 49.
    Sheikh, K., Forster, J., and Nielsen, L. K. (2005) Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol. Prog. 21, 112–121.CrossRefPubMedGoogle Scholar
  50. 50.
    Oliveira, A. P., Nielsen, J., and Forster, J. (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5, 39.CrossRefPubMedGoogle Scholar
  51. 51.
    Teusink, B., van Enckevort, F. H. J., Francke, C., Wiersma, A., Wegkamp, A., Smid, E. J., and Siezen, R. J. (2005) In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: Comparing predictions of nutrient requirements with those from growth experiments. Appl. Environ. Microbiol. 71, 7253–7262.CrossRefPubMedGoogle Scholar
  52. 52.
    Becker, S. A., and Palsson, B. O. (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 5, 8.CrossRefPubMedGoogle Scholar
  53. 53.
    Heinemann, M., Kummel, A., Ruinatscha, R., and Panke, S. (2005) In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol. Bioeng. 92, 850–864.CrossRefPubMedGoogle Scholar
  54. 54.
    Feist, A. M., Scholten, J. C. M., Palsson, B. O., Brockman, F., and Ideker, T. (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 4.CrossRefGoogle Scholar
  55. 55.
    Borodina, I., Krabben, P., and Nielsen, J. (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res. 15, 820–829.CrossRefPubMedGoogle Scholar
  56. 56.
    Karp, P. D., Paley, S., and Romero, P. (2002) The Pathway Tools software. Bioinformatics 18(Suppl 1), S225–S232.PubMedGoogle Scholar
  57. 57.
    Klamt, S., Stelling, J., Ginkel, M., and Gilles, E. D. (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19, 261–269.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee, S. Y., Lee, D.-Y., and Hong, S. H. (2003) MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform. 14, 23–33.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Isabel Rocha
    • 1
  • Jochen Förster
    • 2
  • Jens Nielsen
    • 3
  1. 1.Centro de Engenharia BiológicaUniversidade do MinhoBragaPortugal
  2. 2.Fluxome Sciences A/SLyngbyDenmark
  3. 3.Center for Microbial Biotechnology BiocentrumTechnical University of DenmarkLyngbyDenmark

Personalised recommendations