Analysis of Genetic Interactions on a Genome-Wide Scale in Budding Yeast: Diploid-Based Synthetic Lethality Analysis by Microarray

  • Pamela B. Meluh
  • Xuewen Pan
  • Daniel S. Yuan
  • Carol Tiffany
  • Ou Chen
  • Sharon Sookhai-Mahadeo
  • Xiaoling Wang
  • Brian D. Peyser
  • Rafael Irizarry
  • Forrest A. Spencer
  • Jef D. Boeke
Part of the Methods in Molecular Biology™ book series (MIMB, volume 416)


Comprehensive collections of open reading frame (ORF) deletion mutant strains exist for the budding yeast Saccharomyces cerevisiae. With great prescience, these strains were designed with short molecular bar codes or TAGs that uniquely mark each deletion allele, flanked by shared priming sequences. These features have enabled researchers to handle yeast mutant collections as complex pools of ∼6000 strains. The presence of any individual mutant within a pool can be assessed indirectly by measuring the relative abundance of its corresponding TAG(s) in genomic DNA prepared from the pool. This is readily accomplished by wholesale polymerase chain reaction (PCR) amplification of the TAGs using fluorescent oligonucleotide primers that recognize the common flanking sequences, followed by hybridization of the labeled PCR products to a TAG oligonucleotide microarray. Here we describe a method—diploid-based synthetic lethality analysis by microarray (dSLAM)—whereby such pools can be manipulated to rapidly construct and assess the fitness of 6000 double-mutant strains in a single experiment. Analysis of double-mutant strains is of growing importance in defining the spectrum of essential cellular functionalities and in understanding how these functionalities interrelate.

Key Words

genetic interaction molecular barcode oligonucleotide microarray SLAM synthetic lethality yeast knock-out strains 


  1. 1.
    Brownstein M.J., Khodursky, A., and Conniffe, D. B. (2003) Functional Genomics: Methods and Protocols. Methods in Molecular Biology. Totowa, NJ: Humana Press; 224.Google Scholar
  2. 2.
    Pevsner, J. (2003) Bioinformatics and Functional Genomics. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
  3. 3.
    Oliver, S. G., van der Aart, Q. J., Agostoni-Carbone, M. L., Aigle, M., Alberghina, L., Alexandraki, D., et al. (1992) The complete DNA sequence of yeast chromosome III. Nature 357, 38–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldman, H., et al. (1996) Life with 6000 genes. Science 274, 546–567.CrossRefPubMedGoogle Scholar
  5. 5.
    Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., et al. (1999) Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.CrossRefPubMedGoogle Scholar
  6. 6.
    Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome, Nature 418, 387–391.CrossRefPubMedGoogle Scholar
  7. 7.
    Scherens, B., and Goffeau, A. (2004) The uses of genome-wide yeast mutant collections. Genome Biol. 5, 229.CrossRefPubMedGoogle Scholar
  8. 8.
    Wach, A., Brachat, A., Poehlmann, R., and Philippsen, P. (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.CrossRefPubMedGoogle Scholar
  9. 9.
    Ooi, S.-L., Shoemaker, D. D., and Boeke, J. D. (2001) A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556.CrossRefPubMedGoogle Scholar
  10. 10.
    Pan, X., Yuan, D. S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J. S., et al. (2004) A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16, 487–496.CrossRefPubMedGoogle Scholar
  11. 11.
    Kessler, M. M., Zeng, Q., Hogan, S., Cook, R., Morales, A. J., and Cottarel, G. (2003) Systematic discovery of new genes in the Saccharomyces cerevisiae genome. Genome Res. 13, 264–271.CrossRefPubMedGoogle Scholar
  12. 12.
    Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254.CrossRefPubMedGoogle Scholar
  13. 13.
    Kastenmayer, J. P., Ni, L., Chu, A., Kitchen, L. E., Au, W. C., Yang, H., et al. (2006) Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res. 16, 365–373.CrossRefPubMedGoogle Scholar
  14. 14.
    Ooi, S.-L., Pan, X., Peyser, B. D., Ye, P., Meluh, P. B., Yuan, D. S., et al. (2006) Global synthetic-lethality analysis and yeast functional profiling. Trends Genet. 22, 56–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Pan, X., Ye, P., Yuan, D. S., Wang, X., Bader, J. S., and Boeke, J. D. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081.CrossRefPubMedGoogle Scholar
  16. 16.
    Pan, X., Yuan, D. S., Ooi S.-L., Wang, X., Sookhai-Mahadeo, S., Meluh, P. and Boeke, J. D. (2007) dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae. Methods 41, 206–221.CrossRefPubMedGoogle Scholar
  17. 17.
    Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.CrossRefPubMedGoogle Scholar
  18. 18.
    Tong, A. H., Lesage, G., Bader, G. D., Ding H., Xu, H., Xin, X., et al. (2004) Global mapping of the yeast genetic interaction network. Science 303, 808–813.CrossRefPubMedGoogle Scholar
  19. 19.
    Tong, A. H., and Boone, C. (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313, 171–192.PubMedGoogle Scholar
  20. 20.
    Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.CrossRefPubMedGoogle Scholar
  21. 21.
    Goldstein, A. L., and McCusker, J. H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.CrossRefPubMedGoogle Scholar
  22. 22.
    Yuan, D. S., Pan, X., Ooi, S.-L., Peyser, B. D., Spencer, F. A., Irizarry, R. A. and Boeke, J. D. (2005) Improved microarray methods for profiling the Yeast Knockout strain collection. Nucleic Acids Res. 33, e103.CrossRefPubMedGoogle Scholar
  23. 23.
    Fare, T. L., Coffey, E. M., Dai, H., He, Y. D., Kessler, D. A., Kilian, K. A., et al. (2003) Effects of atmospheric ozone on microarray data quality. Anal. Chem. 75, 4672–4675.CrossRefPubMedGoogle Scholar
  24. 24.
    Eason, R. G., Pourmand, N., Tongprasit, W., Herman, Z. S., Anthony, K., Jejelowo, O., et al. (2004). Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains. Proc. Natl. Acad. Sci. U.S.A. 101, 11046–11051.CrossRefPubMedGoogle Scholar
  25. 25.
    Boeke, J. D., Trueheart, J., Natsoulis, G., and Fink, G. R. (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154, 164–175.CrossRefPubMedGoogle Scholar
  26. 26.
    Breier, A. M., Chatterji, S., and Cozzarelli, N. R. (2004) Prediction of Saccharomyces cerevisiae replication origins. Genome Biol. 5, R22.CrossRefPubMedGoogle Scholar
  27. 27.
    Feng, W., Collingwood, D., Boeck, M. E., Fox, L. A., Alvino, G. M., Fangman, W. L., et al. (2006) Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8, 148–155.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffman, C. S., and Winston, F. (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.CrossRefPubMedGoogle Scholar
  29. 29.
    Peyser, B. D., Irizarry, R. A., Tiffany, C. W., Chen, O., Yuan, D. S., Boeke, J. D., and Spencer F. A. (2005) Improved statistical analysis of budding yeast TAG microarrays revealed by defined spike-in pools. Nucleic Acids Res. 33, e140.CrossRefPubMedGoogle Scholar
  30. 30.
    Peyser, B. D., Irizarry, R., and Spencer, F. A. (2006). Statistical analysis of fitness data determined by TAG hybridization on microarrays. This volume.Google Scholar
  31. 31.
    Ye, P., Peyser, B. D., Spencer, F. A., and Bader J. S. (2005) Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast. BMC Bio-informatics 6, 270.Google Scholar
  32. 33.
    Ye, P., Peyser, B. D., Pan, X., Boeke, J. D., Spencer, F. A., and Bader J. S. (2005) Gene function prediction from congruent synthetic lethal interactions in yeast. Mol. Syst. Biol. 1, 2005.0026.Google Scholar
  33. 34.
    Reguly, T., Breitkreutz, A., Boucher, L., Breitkreutz, B. J., Hon, G. C., Myers, C. L., et al. (2006) Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J Biol. 5, 11.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pamela B. Meluh
    • 1
  • Xuewen Pan
    • 2
  • Daniel S. Yuan
    • 1
  • Carol Tiffany
    • 3
  • Ou Chen
    • 3
  • Sharon Sookhai-Mahadeo
    • 1
  • Xiaoling Wang
    • 1
  • Brian D. Peyser
    • 4
  • Rafael Irizarry
    • 5
  • Forrest A. Spencer
    • 6
  • Jef D. Boeke
    • 1
  1. 1.Department of Molecular Biology and Genetics, The High Throughput Biology CenterThe Johns Hopkins University School of MedicineBaltimore
  2. 2.Department of Biochemistry and Molecular BiologyBaylor College of MedicineHouston
  3. 3.McKusick-Nathans Institute of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimore
  4. 4.United States Army Medical Research Institute of Infectious Diseases, Fort DetrickFrederick
  5. 5.Department of Biostatistics, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimore
  6. 6.Department of Molecular Biology and Genetics, McKusick-Nathans Institute of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimore

Personalised recommendations