Advertisement

Microarrays pp 115-136 | Cite as

Utilization of Microarray Platforms in Clinical Practice

An Insight on the Preparation and Amplification of Nucleic Acids From Frozen and Fixed Tissues
  • Fahd Al-Mulla
Part of the Methods in Molecular Biology book series (MIMB, volume 382)

Abstract

The last decade has witnessed an impressive upsurge in the utilization of microarray platforms for biomedical research. However, the application of this emerging technology in medical practice lagged behind. This lag is understandable because there are specific issues pertaining to the utilization of clinical samples, which has to be rigorously addressed and overcome before microarrays enter mainstream medical practice. Such issues include cost, ethics, the complexity and heterogeneity of human tissue architecture, and their corresponding diseases, the type of tissues to be used, nucleic acids amplification, and experimental variability. As microarrays enter, albeit cautiously, the frontline of clinical practice, investigators and clinicians require to set up protocols that address these issues. This chapter decribes the methods used for nucleic acids preparation from frozen and formalin-fixed paraffin-embedded human tissues using macro-and microdissection and show their suitability for use in microarray experiments.

Key Words

Formalin-fixed paraffin-embedded tissue microarrays microdissection nucleic acids extraction amplification frozen tissue 

References

  1. 1.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefGoogle Scholar
  2. 2.
    Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.CrossRefGoogle Scholar
  3. 3.
    Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.CrossRefGoogle Scholar
  4. 4.
    van’t Veer, L. J., Dai, H., van de Vijver, M. S., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.CrossRefGoogle Scholar
  5. 5.
    Snijders, A. M., Meijer, G. A., Brakenhoff, R. H., van den Brule, A. J., and van Diest, P. J. (2000) Microarray techniques in pathology: tool or toy? Mol. Pathol. 53, 289–294.CrossRefGoogle Scholar
  6. 6.
    Forster, T., Roy, D., and Ghazal, P. (2003) Experiments using microarray technology: limitations and standard operating procedures. J. Endocrinol. 178, 195–204.CrossRefGoogle Scholar
  7. 7.
    Russo, G., Zegar, C., and Giordano, A. (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22, 6497–6507.CrossRefGoogle Scholar
  8. 8.
    Ein-Dor, L., Kela, I., Getz, G., Givol, D., and Domany, E. (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178.CrossRefGoogle Scholar
  9. 9.
    Yuen, T., Wurmbach, E., Pfeffer, R. L., Ebersole, B. J., and Sealfon, S. C. (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, E48.CrossRefGoogle Scholar
  10. 10.
    Srinivasan, M., Sedmak, D., and Jewell, S. (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971.CrossRefGoogle Scholar
  11. 11.
    Al-Mulla, F., Al-Tamimi, R., and Bitar, M. S. (2004) Comparison of two probe preparation methods using long oligonucleotide microarrays. Biotechniques 37, 827–833.Google Scholar
  12. 12.
    Goff, L. A., Bowers, J., Schwalm, J., Howerton, K., Getts, R. C., and Hart, R. P. (2004) Evaluation of sense-strand mRNA amplification by comparative quantitative PCR. BMC Genomics 5, 76.CrossRefGoogle Scholar
  13. 13.
    Auer, H., Lyianarachchi, S., Newsom, D., Klisovic, M. I., Marcucci, G., and Kornacker, K. (2003) Chipping away at the chip bias: RNA degradation in microarray analysis. Nat. Genet. 35, 292–293.CrossRefGoogle Scholar
  14. 14.
    Cole, K. A., Krizman, D. B., and Emmert-Buck, M. R. (1999) The genetics of cancer-a 3D model. Nat. Genet. 21, 38–41.CrossRefGoogle Scholar
  15. 15.
    Ehrig, T., Abdulkadir, S. A., Dintzis, S. M., Milbrandt, J., and Watson, M. A. (2001) Quantitative amplification of genomic DNA from histological tissue sections after staining with nuclear dyes and laser capture microdissection. J. Mol. Diagn. 3, 22–25.CrossRefGoogle Scholar
  16. 16.
    Lasken, R. S. and Egholm, M. (2003) Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 21, 531–535.CrossRefGoogle Scholar
  17. 17.
    Wang, G., Brennan, C., Rook, M., et al. (2004) Balanced-PCR amplification allows unbiased identification of genomic copy changes in min cell and tissue samples. Nucleic Acids Res. 32, E76.CrossRefGoogle Scholar
  18. 18.
    Makrigiorgos, G. M., Chakrabarti, S., Zhang, Y., Kaur, M., and Price, B. D. (2002) A PCR-based amplification method retaining the quantitative difference between two complex genomes. Nat. Biotechnol. 20, 936–939.CrossRefGoogle Scholar
  19. 19.
    Stoecklein, N. H., Erbersdobler, A., Schmidt-Kittler, O., et al. (2002) SCOMP is superior to degenerated oligonucleotide primed-polymerase chain reaction for global amplification of min amounts of DNA from microdissected archival tissue samples. Am. J. Pathol. 161, 43–51.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Fahd Al-Mulla
    • 1
  1. 1.Department of Pathology, Molecular Pathology Division, Faculty of MedicineKuwait UniversitySafatKuwait

Personalised recommendations