Linear-After-The-Exponential Polymerase Chain Reaction and Allied Technologies

Real-Time Detection Strategies for Rapid, Reliable Diagnosis from Single Cells
  • Kenneth E. Pierce
  • Lawrence J. Wangh
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 132)


Accurate detection of gene sequences in single cells is the ultimate challenge to polymerase chain reaction (PCR) sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of linear-after-the-exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at different concentrations, but with novel design criteria to ensure high efficiency and specificity. Compared with conventional PCR, LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATEPCR signals provides a means for improving the accuracy of single cell genetic diagnosis.

Key Words

Asymmetric PCR cell lysis fluorescent probes molecular beacons proteinase K real-time PCR 


  1. 1.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.CrossRefPubMedGoogle Scholar
  2. 2.
    Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real Time Quantitative PCR. Genome Res. 6, 86–94.CrossRefGoogle Scholar
  3. 3.
    Kostrikis, L. G., Tyagi, S., Mhlanga, M. M., Ho, D. D., and Kramer, F. R. (1998) Spectral genotyping of human alleles. Science 27, 1228, 1229.CrossRefGoogle Scholar
  4. 4.
    Gyllensten, U. B. and Erlich, H. A. (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 85, 7652–7656.CrossRefPubMedGoogle Scholar
  5. 5.
    Sanchez, J. A., Pierce, K. E., Rice, J. E., and Wangh, L. J. (2004) Linear-After-The-Exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc. Natl. Acad. Sci. USA 101, 1933–1938.CrossRefPubMedGoogle Scholar
  6. 6.
    Pierce, K. E., Rice, J. E., Sanchez, J. A., and Wangh, L. J. (2005) LATE-PCR: primer design criteria for high yields of specific single-stranded DNA and improved real-time detection. Proc. Natl. Acad. Sci. USA, 102, 8609–8614.CrossRefPubMedGoogle Scholar
  7. 7.
    Pierce, K. E., Rice, J. E., Sanchez, J. A., and Wangh, L. J. (2003) Detection of cystic fibrosis alleles from single cells using molecular beacons and a novel method of asymmetric real-time PCR. Mol. Hum. Reprod. 9, 815–820.CrossRefPubMedGoogle Scholar
  8. 8.
    Pierce, K. E., Rice, J. E., Sanchez, J. A., and Wangh, L. J. (2002) QuantiLyse™: reliable DNA amplification from single cells. BioTechniques 32, 1106–1111.PubMedGoogle Scholar
  9. 9.
    Allawi, H. T. and SantaLucia, J. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36, 10,581–10,584.CrossRefPubMedGoogle Scholar
  10. 10.
    SantaLucia, J. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 5, 1460–1465.CrossRefGoogle Scholar
  11. 11.
    Owczarzy, R., Vallone, P. M., Gallo, F. J., Paner, T. M., Lane, M. J., and Benight, A. S. (1998) Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–223.CrossRefGoogle Scholar
  12. 12.
    Breslauer, K. J. (1986) Methods for obtaining thermodynamic data on oligonucleotide transitions, in Thermodynamic Data for Biochemistry and Biotechnology (Hinz H. ed.), Springer-Verlag, New York, pp. 402–427.Google Scholar
  13. 13.
    Le Novère, N. (2001) MELTING, computing the melting temperature of nucleic acid duplex. Bioinformatics 17, 1226, 1227.CrossRefPubMedGoogle Scholar
  14. 14.
    SantaLucia, J., Allawi, H. T., and Seneviratne, P. A. (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562.CrossRefPubMedGoogle Scholar
  15. 15.
    Wetmur, J. G. (1991) DNA probes: applications of the principles of nucleic acid hybridization. Crit. Rev. Biochem. Mol. Biol. 26, 227–235.CrossRefPubMedGoogle Scholar
  16. 16.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.CrossRefPubMedGoogle Scholar
  17. 17.
    Marras, S. A. E., Kramer, F. R., and Tyagi, S. (2003) Genotyping single nucleotide polymorphisms with molecular beacons, in Single Nucleotide Polymorphisms: Methods and Protocols, vol. 212 (Kwok, P. Y., ed.), Humana Press, Totowa, NJ, pp. 111–128.Google Scholar
  18. 18.
    Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T. (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245, 154–160.CrossRefPubMedGoogle Scholar
  19. 19.
    Pierce, K. E., Rice, J. E., Sanchez, J. A., Brenner, C., and Wangh, L. J. (2000) Real-time PCR using molecular beacons for accurate detection of the Y chromosome in single human blastomeres. Mol. Hum. Reprod. 6, 1155–1164.CrossRefPubMedGoogle Scholar
  20. 20.
    Rice, J. E., Sanchez, J. A., Pierce, K. E., and Wangh, L. J. (2002) Real-time PCR with molecular beacons provides a highly accurate assay for Tay-Sachs alleles in single cells. Prenat. Diagn. 22, 1130–1134.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosner, B. (1995) Fundamentals of Biostatistics, Wadsworth Publishing, Belmont, CA, pp. 277–282.Google Scholar
  22. 22.
    Rechitsky, S., Verlinsky, O., Amet, T., Rechitsky, M., Kouliev, T., Strom, C., and Verlinsky, Y. (2001) Reliability of preimplantation diagnosis for single gene disorders. Mol. Cell. Endocrinol. 183, S65–S68.CrossRefPubMedGoogle Scholar
  23. 23.
    Al-Soud, W. A., Jonsson, L. J., and Radstrom, P. (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J. Clin. Microbiol. 38, 345–350.PubMedGoogle Scholar
  24. 24.
    Al-Soud, W. A. and Radstrom, P. (2001) Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 3, 485–493.CrossRefGoogle Scholar
  25. 25.
    Cui, X. F., Li, H. H., Goradia, T. M., Lange, K., Kazazian, H. H. Jr, Galas, D., and Arnheim, N. (1989) Single-sperm typing: determination of genetic distance between the G gamma-globin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers. Proc. Natl. Acad. Sci. USA 86, 9389–9393.CrossRefPubMedGoogle Scholar
  26. 26.
    Li, Q., Luan, G., Guo, Q., and Liang, J. (2002) A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, e5.CrossRefPubMedGoogle Scholar
  27. 27.
    Cheng, J., Zhang, Y., and Li, Q. (2004) Real-time PCR genotyping using displacing probes. Nucleic Acids Res. 32, e61.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Kenneth E. Pierce
    • 1
  • Lawrence J. Wangh
    • 1
  1. 1.Department of BiologyBrandeis UniversityWaltham

Personalised recommendations