Electron Energy-Loss Spectroscopy as a Tool for Elemental Analysis in Biological Specimens

  • Nadine Kapp
  • Daniel Studer
  • Peter Gehr
  • Marianne Geiser
Part of the Methods in Molecular Biology™ book series (MIMB, volume 369)

Abstract

A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.

Key Words

Electron energy-loss spectroscopy EELS energy-filter transmission electron microscope EFTEM electron spectroscopic imaging ESI lung nanoparticles titanium 

References

  1. 1.
    Egerton, R. F. (1982) Electron energy loss analysis in biology. Electron Microsc. 1, 151–158.Google Scholar
  2. 2.
    Jeanguillaume, C. (1987) Electron energy loss spectroscopy and biology. Scanning Microsc. 1, 437–450.PubMedGoogle Scholar
  3. 3.
    Roomans, G. M., Wroblewski, J., and Wroblewski, R. (1988) Elemental microanalysis of biological specimens. Scanning Microsc. 2, 937–946.PubMedGoogle Scholar
  4. 4.
    Pezzati, R., Bossi, M., Podini, P., Meldolesi, J., and Grohovaz, F. (1997) High-resolution calcium mapping of the endoplasmatic reticulum-golgi-exocytic membrane system. Mol. Biol. Cell 8, 1501–1512.PubMedGoogle Scholar
  5. 5.
    Bordat, C., Bouet, O., and Cournot, G. (1998) Calcium distribution in high-pressure frozen bone cells by electron energy loss spectroscopy and electron spectroscopic imaging. Histochem. Cell Biol. 109, 167–174.CrossRefPubMedGoogle Scholar
  6. 6.
    Bordat, C., Sich, M. S., Réty, F., Bouet, O., Cournot, G., Cuénod, C. A., and Clément, O. (2000) Distribution of iron oxide nanoparticles in rat lymph nodes studied using electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI). J. Magnetic Res. Imaging 12, 505–509.CrossRefGoogle Scholar
  7. 7.
    Fehrenbach, H., Schmiedl, A., Brasch, F., and Richter, J. (1994) Evaluation of lanthanide tracer methods in the study of mammalian pulmonary parenchyma and cardiac muscle by electron energy-loss spectroscopy. J. Microsc. (Oxford) 174, 207–223.Google Scholar
  8. 8.
    Stearns, R. C., Paulauskis, J. D., and Godleski, J. J. (2001) Endocytosis of ultrafine particles by A549 cells. Am. J. Respir. Cell Mol. Biol. 24, 108–115.PubMedGoogle Scholar
  9. 9.
    Leapman, R. D., Sun, S. Q., Hunt, J. A., and Andrews, S. B. (1994) Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope. Scanning Microsc. Suppl. 8, 245–258.PubMedGoogle Scholar
  10. 10.
    Leapman, R. D. (2003) Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc. (Oxford) 210, 5–15.CrossRefGoogle Scholar
  11. 11.
    Leapman, R. D., Kocsis, E., Zhang, G., Talbot, T. L., and Laquerriere, P. (2004) Three-dimensional distribution of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100, 115–125.CrossRefPubMedGoogle Scholar
  12. 12.
    Kapp, N., Kreyling, W., Schulz, H., Im Hof, V., Gehr, P., Semmler, M., and Geiser, M. (2004) Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc. Res. Tech. 63, 298–305.Google Scholar
  13. 13.
    Geiser, M., Rothen-Rutishauser, B., Kapp, N., et al. (2005) Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1155–1160.CrossRefGoogle Scholar
  14. 14.
    Barfels, M. M. G., Jiang, X., Heng, X. J., Arsenault, A. L., and Ottensmeyer F. P. (1998) Low energy loss electron microscopy of chromophores. Micron 29, 97–104.CrossRefPubMedGoogle Scholar
  15. 15.
    Williams, D. B. and Carter, C. B. (eds.) (1996) Transmission Electron Microscopy: A Textbook for Material Scientists. IV Spectrometry. Plenum Press, New York.Google Scholar
  16. 16.
    Brydson, R. (1991) Interpretation of near-edge structure in the electron energy-loss spectrum. EMSA Bull. 21, 57–67.Google Scholar
  17. 17.
    Körtje, K. H. (1994) Image-EELS: simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J. Microsc. (Oxford) 174, 149–159.Google Scholar
  18. 18.
    Egerton, R. F. (ed.) (1986) Electron Energy-loss Spectroscopy in the Electron Microscope. Plenum Press, New York.Google Scholar
  19. 19.
    Reimer, L., Zepke, U., Moesch, J., Schulze-Hillert, S., Ross-Messemer, M., Probst, W., and Weimer, E. (eds.) (1992) EEL Spectroscopy. A Reference Handbook of Standard Data for Identification and Interpretation of electron energy loss spectra and for generation of electron spectroscopic images. Carl Zeiss, Oberkochen.Google Scholar
  20. 20.
    Jeanguillaume, C., Trebbia, P., and Colliex, C. (1978). About the use of EELS for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3, 137–142.CrossRefGoogle Scholar
  21. 21.
    Lavergne, J. L., Foa, C., Bongrand, P., Seux, D., and Martin, J. M. (1994) Application of recording and processing of energy-filtered image sequences for elemental mapping of biological specimens: Image-spectrum. J. Microsc. (Oxford) 174, 195–206.Google Scholar
  22. 22.
    Williams, D. B. and Carter, C. B. (eds.) (1996) Transmission Electron Microscopy: A Textbook for Material Scientists. I. Basic. Plenum Press, New York.Google Scholar
  23. 23.
    Gelsema, E. S., Beckers, A. L., Sorber, C. W., and de Bruijn, W. C. (1992) Correspondence analysis for quantification in electron energy loss spectroscopy and imaging. Methods Inf. Med. 31, 29–35.PubMedGoogle Scholar
  24. 24.
    Starosud, A., Bazett-Jones, D. P., and Langford, C. H. (1997) Energy filtered transmission electron microscopy (EFTEM) in the characterization of supported TiO2 photocatalysts. Chem. Commun. 5, 443–444.CrossRefGoogle Scholar
  25. 25.
    Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., and Schulz, H. (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health 65, 1513–1530.CrossRefGoogle Scholar
  26. 26.
    Im Hof, V., Scheuch, G., Geiser, M., Gebhart, G., Gehr, P., and Heyder, J. (1989) Techniques for the determination of particle deposition in lungs of hamsters. J. Aerosol. Med. 2, 247–259.Google Scholar
  27. 27.
    Ottensmeyer, F. P. (1984) Electron Spectroscopic Imaging: Parallel energy filtering and microanalysis in the fixed-beam electron microscope. J. Ultrastruct. Res. 88, 121–134.CrossRefPubMedGoogle Scholar
  28. 28.
    Ottensmeyer, F. P. and Andrews, J. W. (1980) High-resolution microanalysis of biological spsecimens by electron energy-loss spectroscopy and by electron spectroscopic imaging. J. Ultrastruct. Res. 72, 336–348.CrossRefPubMedGoogle Scholar
  29. 29.
    Ottensmeyer, F. P. (1982) Scattered electrons in microscopy and microanalysis. Science 215, 461–466.CrossRefPubMedGoogle Scholar
  30. 30.
    Colliex, C. (1986) Electron energy-loss spectroscopy analysis and imaging of biological specimen. Ann. NY Acad. Sci. 483, 311–325.CrossRefPubMedGoogle Scholar
  31. 31.
    Leapman, R. D. and Newbury, D. E. (1993) Trace element analysis at nanometer spatial resolution by paralle-detection electron energy-loss spectroscopy. Anal. Chem. 65, 2409–2414.CrossRefPubMedGoogle Scholar
  32. 32.
    Hunt, J. A. and Williams, D. B. (1991) Energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Nadine Kapp
    • 1
  • Daniel Studer
    • 2
  • Peter Gehr
    • 2
  • Marianne Geiser
    • 2
  1. 1.Department of Veterinary Anatomy, Veterinary SchoolUniversity of BernSwitzerland
  2. 2.Institute AnatomyUniversity of BernBernSwitzerland

Personalised recommendations