Cryoelectron Microscopy of Icosahedral Virus Particles

  • Wen Jiang
  • Wah Chiu
Part of the Methods in Molecular Biology™ book series (MIMB, volume 369)


With the rapid progresses in both instrumentation and computing, it is increasingly straightforward and routine to determine the structures of icosahedral viruses to subnanometer resolutions (6–10 Å) by cryoelectron microscopy and image reconstruction. In this resolution range, secondary structure elements of protein subunits can be clearly discerned. Combining the three-dimensional density map and bioinformatics of the protein components, the folds of the virus capsid shell proteins can be derived. This chapter will describe the experimental and computational procedures that lead to subnanometer resolution structural determinations of icosahedral virus particles. In addition, we will describe how to extract useful structural information from the three-dimensional maps.

Key Words

Cryo-EM cryoelectron microscopy icosahedral virus 3D reconstruction subnanometer resolution secondary structure elements structural fitting 


  1. 1.
    Crowther, R. A., Amos, L. A., Finch, J. T., De Rosier, D. J., and Klug, A. (1970) Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226, 421–425.PubMedCrossRefGoogle Scholar
  2. 2.
    Crowther, R. A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by fourier synthesis from electron micrographs. Phil. Trans. Roy. Soc. Lond. B. 261, 221–230.CrossRefGoogle Scholar
  3. 3.
    Bottcher, B., Wynne, S. A., and Crowther, R. A. (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P. T., Stahl, S. J., and Steven, A. C. (1997) Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 91–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J., and Chiu, W. (2000) Seeing the herpesvirus capsid at 8.5 Å. Science 288, 877–880.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou, Z. H., Baker, M. L., Jiang, W., Dougherty, M., Jakana, J., Dong, G., Lu, G., and Chiu, W. (2001) Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat. Struct. Biol. 8, 868–873.PubMedCrossRefGoogle Scholar
  7. 7.
    Chiu, W., Baker, M. L., Jiang, W., Dougherty, M., and Schmid, M. F. (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372.PubMedCrossRefGoogle Scholar
  8. 8.
    Jiang, W., Baker, M. L., Ludtke, S. J., and Chiu, W. (2001) Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044.PubMedCrossRefGoogle Scholar
  9. 9.
    Chiu, W., Baker, M. L., Jiang, W., and Zhou, Z. H. (2002) Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr. Opin. Struct. Biol. 12, 263–269.PubMedCrossRefGoogle Scholar
  10. 10.
    Ludtke, S. J., Baldwin, P. R., and Chiu, W. (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang, W., Li, Z., Zhang, Z., Booth, C. R., Baker, M. L., and Chiu, W. (2001) Semi-automated icosahedral particle reconstruction at sub-nanometer resolution. J. Struct. Biol. 136, 214–225.PubMedCrossRefGoogle Scholar
  12. 12.
    Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., and Singh, R. M. (1966) Hydrogen ion buffers for biological research. Biochemistry 5, 467–477.PubMedCrossRefGoogle Scholar
  13. 13.
    Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984) Cryo-electron microscopy of viruses. Nature 308, 32–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Dubochet, J., Adrian, M., Chang, J. J., et al. (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228.PubMedCrossRefGoogle Scholar
  15. 15.
    Fukami, A. and Adachi, K. (1965) A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. 14, 112–118.Google Scholar
  16. 16.
    Jeng, T. W., Talmon, Y., and Chiu, W. (1988) Containment system for the preparation of vitrified-hydrated virus specimens. J. Electron Microsc. Tech. 8, 343–348.PubMedCrossRefGoogle Scholar
  17. 17.
    Booth, C. R., Jiang, W., Baker, M. L., Zhou, Z. H., Ludtke, S. J., and Chiu, W. (2004) A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. J. Struct. Biol. 147, 116–127.PubMedCrossRefGoogle Scholar
  18. 18.
    Suloway, C., Pulokas, J., Fellmann, D., et al. (2005) Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, P., Beatty, A., Milne, J. L., and Subramaniam, S. (2001) Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135, 251–261.PubMedCrossRefGoogle Scholar
  20. 20.
    Lei, J. and Frank, J. (2005) Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Saban, S. D., Nepomuceno, R. R., Gritton, L. D., Nemerow, G. R., and Stewart, P. L. (2005) CryoEM structure at 9 Å resolution of an adenovirus vector targeted to hematopoietic cells. J. Mol. Biol. 349, 526–537.PubMedCrossRefGoogle Scholar
  22. 22.
    Ludtke, S. J., Chen, D. H., Song, J. L., Chuang, D. T., and Chiu, W. (2004) Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136.PubMedCrossRefGoogle Scholar
  23. 23.
    Jiang, W., Baker, M. L., Wu, Q., Bajaj, C., and Chiu, W. (2003) Applications of a bilateral denoising filter in biological electron microscopy. J. Struct. Biol. 144, 114–122.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu, Y., Carragher, B., Glaeser, R. M., et al. (2004) Automatic particle selection: results of a comparative study. J. Struct. Biol. 145, 3–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E., and Bamford, D. (2000) Local average intensity-based method for identifying spherical particles in electron micrographs. J. Struct. Biol. 131, 126–134.PubMedCrossRefGoogle Scholar
  26. 26.
    Thon, F. (1971) Phase contrast electron microscopy, in Electron Microscopy in Material Sciences (Valdre, U., ed.), Academic Press, New York, pp. 571–625.Google Scholar
  27. 27.
    Erickson, H. P. and Klug, A. (1971) Measurement and compensation of de-focusing and aberrations by Fourier processing of electron micrographs. Phil. Trans. Roy. Soc. Lond. B. 261, 105–118.CrossRefGoogle Scholar
  28. 28.
    Hanszen, K. J. (1967) New knowledge on resolution and contrast in the electron microscope image. Naturwissenschaften 54, 125–133.PubMedCrossRefGoogle Scholar
  29. 29.
    Saad, A., Ludtke, S. J., Jakana, J., Rixon, F. J., Tsuruta, H., and Chiu, W. (2001) Fourier amplitude decay of electron cryomicroscopic images of single particles and effects on structure determination. J. Struct. Biol. 133, 32–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Frank, J., Radermacher, M., Penczek, P., et al. (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199.PubMedCrossRefGoogle Scholar
  31. 31.
    van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R., and Schatz, M. (1996) A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Grigorieff, N. (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277, 1033–1046.PubMedCrossRefGoogle Scholar
  33. 33.
    Baker, T. S. and Cheng, R. H. (1996) A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130.PubMedCrossRefGoogle Scholar
  34. 34.
    Sorzano, C. O., Marabini, R., Velazquez-Muriel, J., et al. (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204.PubMedCrossRefGoogle Scholar
  35. 35.
    Liang, Y., Ke, E. Y., and Zhou, Z. H. (2002) IMIRS: a high-resolution 3D reconstruction package integrated with a relational image database. J. Struct. Biol. 137, 292–304.PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang, W., Chang, J., Jakana, J., Weigele, P., King, J., and Chiu, W. (2006) Structure of Epsilon15 phage reveals organization of genome and DNA packaging/injection apparatus. Nature 439, 612–616.PubMedCrossRefGoogle Scholar
  37. 37.
    Harauz, G. and van Heel, M. (1986) Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156.Google Scholar
  38. 38.
    van Heel, M. and Schatz, M. (2005) Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262.PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenthal, P. B. and Henderson, R. (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745.PubMedCrossRefGoogle Scholar
  40. 40.
    Baker, M. L., Jiang, W., Bowman, B. R., et al. (2003) Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. J. Mol. Biol. 331, 447–456.PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang, W., Li, Z., Zhang, Z., Baker, M. L., Prevelige, P. E., Jr., and Chiu, W. (2003) Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat. Struct. Biol. 10, 131–135.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Wen Jiang
    • 1
  • Wah Chiu
    • 2
    • 3
  1. 1.Department of Biological SciencesPurdue UniversityWest Lafayette
  2. 2.National Center For Macromolecular ImagingBaylor College of MedicineHouston
  3. 3.Verna and Marrs Mclean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHouston

Personalised recommendations