Advertisement

Imaging pHluorin-Based Probes at Hippocampal Synapses

  • Stephen J. Royle
  • Björn Granseth
  • Benjamin Odermatt
  • Aude Derevier
  • Leon Lagnado
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 457)

Summary

Accurate measurement of synaptic vesicle exocytosis and endocytosis is crucial to understanding the molecular basis of synaptic transmission. The fusion of a pH-sensitive green fluorescent protein (pHluorin) to various synaptic vesicle proteins has allowed the study of synaptic vesicle recycling in real time. Two such probes, synaptopHluorin and sypHy, have been imaged at synapses of hippocampal neurons in culture. The combination of these reporters with techniques for molecular interference, such as RNAi allows for the study of molecules involved in synaptic vesicle recycling. Here the authors describe methods for the culture and transfection of hippocampal neurons, imaging of pHluorin-based probes at synapses and analysis of pHluorin signals down to the resolution of individual synaptic vesicles.

Key Words

Endocytosis exocytosis hippocampal synapses imaging neurons synaptic vesicle synaptopHluorin sypHy 

Notes

Acknowledgments

Superecliptic pHluorin and monomeric RFP cDNAs were kind gifts from Drs James Rothman and Roger Tsien. This work was supported by the Medical Research Council (MRC), the Swedish Research Council and the Human Frontiers Science Program (HFSP).

References

  1. 1.
    Katz, B. (1969) The Release of Neural Transmitter Substances. Liverpool University Press, Liverpool.Google Scholar
  2. 2.
    Royle, S. J., and Lagnado, L. (2003) Endocytosis at the synaptic terminal. J Physiol 553, 345–355.PubMedCrossRefGoogle Scholar
  3. 3.
    Ryan, T. A. (2001) Presynaptic imaging techniques. Curr Opin Neurobiol 11, 544–549.PubMedCrossRefGoogle Scholar
  4. 4.
    Miesenbock, G., De Angelis, D. A., and Rothman, J. E. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195.PubMedCrossRefGoogle Scholar
  5. 5.
    Sankaranarayanan, S., De Angelis, D., Rothman, J. E., and Ryan, T. A. (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79, 2199–2208.PubMedCrossRefGoogle Scholar
  6. 6.
    Granseth, B., Odermatt, B., Royle, S. J., and Lagnado, L. (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786.PubMedCrossRefGoogle Scholar
  7. 7.
    Diril, M. K., Wienisch, M., Jung, N., Klingauf, J., and Haucke, V. (2006) Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Developmental cell 10, 233–244.PubMedCrossRefGoogle Scholar
  8. 8.
    Voglmaier, S. M., Kam, K., Yang, H., et al. (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Atluri, P. P. and Ryan, T. A. (2006) The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J Neurosci 26, 2313–2320.PubMedCrossRefGoogle Scholar
  10. 10.
    Gandhi, S. P. and Stevens, C. F. (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613.PubMedCrossRefGoogle Scholar
  11. 11.
    Sankaranarayanan, S. and Ryan, T. A. (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2, 197–204.PubMedCrossRefGoogle Scholar
  12. 12.
    Fernandez-Alfonso, T., Kwan, R., and Ryan, T. A. (2006) Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186.PubMedCrossRefGoogle Scholar
  13. 13.
    Wienisch, M. and Klingauf, J. (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9, 1019–1027.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnston, P. A. and Sudhof, T. C. (1990) The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization. J Biol Chem. 265, 8869–8873.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen J. Royle
    • 1
  • Björn Granseth
    • 2
  • Benjamin Odermatt
    • 2
  • Aude Derevier
    • 2
  • Leon Lagnado
    • 2
  1. 1.School of Biomedical SciencesUniversity of LiverpoolLiverpoolUK
  2. 2.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations