Circadian Rhythms pp 131-142

Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)

Analysis of Rhythmic Gene Expression in Adult Drosophila Using the Firefly Luciferase Reporter Gene

  • Ralf Stanewsky

Abstract

The study of circadian clock function in Drosophila relies heavily on the analysis of rhythmic gene expression. Typically, individuals or groups of flies collected during a specific time of the circadian day need to be sacrificed, followed by the extraction of clock gene products. This procedure makes it impossible to analyze molecular rhythms in an individual over time. To measure clock gene expression within the living animal, firefly luciferase can be used as real-time reporter gene. This chapter describes how rhythmic expression of clock or clock-controlled genes can be measured in living adult Drosophila. A survey of all existing clock-related luciferase transgenics is given.

Key Words

Luciferase period timeless takeout transgenics reporter gene bioluminescence circadian rhythms 

References

  1. 1.
    Lockett, T. J., Lewy, D., Holmes, P., Medveczky, K., and Saint, R. (1993) The rough (ro+) gene as a dominant P-element marker in germ line transformation of Drosophila melanogaster. Gene 114, 187–193.CrossRefGoogle Scholar
  2. 2.
    Kay, S. A., Millar, A. J., Smith, K. W., Anderson, S. L., Brandes C., and Hall, J. C. (1994) Video imaging of regulated firefly luciferase activity in transgenic plants and Drosophila. Promega Notes Magazine 49, 22.Google Scholar
  3. 3.
    Brandes, C., Plautz, J. D., Stanewsky, R., et al. (1996) Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16, 687–692.CrossRefPubMedGoogle Scholar
  4. 4.
    Stanewsky, R., Jamison, C., Plautz, J. D., Kay, S. A., and Hall, J. C. (1997) Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 16, 5006–5018.CrossRefPubMedGoogle Scholar
  5. 5.
    Plautz, J. D., Straume, M., Stanewsky, R., et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217.CrossRefPubMedGoogle Scholar
  6. 6.
    Veleri, S., Brandes, C., Helfrich-Förster, C., Hall, J. C., and Stanewsky, R. (2003) A self-sustaining, light-entrainable neuronal circadian oscillator in the brain of Drosophila. Curr. Biol. 13, 1758–1767.CrossRefPubMedGoogle Scholar
  7. 7.
    Hazelrigg, T. (2000) GFP and other reporters. In: Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R.S., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 313–343.Google Scholar
  8. 8.
    Stanewsky, R., Kaneko, M., Emery, P., et al. (1998) The cry b mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692.CrossRefPubMedGoogle Scholar
  9. 9.
    Hardin, P. E. (1994) Analysis of period mRNA cycling in Drosophila head and body tissues indicates that body oscillators behave differently from head oscillators. Mol. Cell. Biol. 4, 7211–7218.Google Scholar
  10. 10.
    Krishnan, B., Levine, J. D., Sison-Lynch, M. K., et al. (2001). A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313–317.CrossRefPubMedGoogle Scholar
  11. 11.
    Levine, J. D., Funes, P., Dowse, H. B., and Hall, J.C. (2002) Signal analysis of behavioral and molecular cycles. BMC Neuroscience 3, 1.CrossRefPubMedGoogle Scholar
  12. 12.
    Stanewsky, R., Sison, K., Brandes, C., and Hall, J. C. (2002) Mapping of elements involved in regulating normal temporal period and timeless RNA expression patterns in Drosophila melanogaster. J. Biol. Rhythms 17, 293–306.CrossRefPubMedGoogle Scholar
  13. 13.
    Allada, R., White, N. E., So, W. V., Hall, J. C., and Rosbash, M. (1998) A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804.CrossRefPubMedGoogle Scholar
  14. 14.
    Belvin, M. P., Zhou, H., and Yin, J. C. P. (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777–787.CrossRefPubMedGoogle Scholar
  15. 15.
    Allada, R., Kadener, S., Nandakumar, N., and Rosbash, M. (2003). A recessive mutant of Drosophila clock reveals a role in circadian rhythms amplitude. EMBO J. 22, 3367–3375.CrossRefPubMedGoogle Scholar
  16. 16.
    So, W. V., Sarov-Blat, L., Kotarski, C. K., McDonald, M.J., Allada, R., and Rosbash, M. (2000) takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol. Cell. Biol. 20, 6935–6944.CrossRefPubMedGoogle Scholar
  17. 17.
    McDonald, M. J., Rosbash, M., and Emery, P. (2001) Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol. Cell. Biol. 21, 1207–1217.CrossRefPubMedGoogle Scholar
  18. 18.
    Williams, J. A., Su, H. S., Bernards, A., Field, J., and Sehgal, A. (2001) A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293, 2251–2256.CrossRefPubMedGoogle Scholar
  19. 19.
    Wülbeck, C., Szabo, G., Shafer, O.T., Helfrich-Förster, C., and Stanewsky, R. (2005) The novel Drosophila tim blind mutation affects behavioral rhythms but not periodic eclosion. Genetics 169, 751–766.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Ralf Stanewsky
    • 1
  1. 1.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations