Stable Isotope Labeling by Amino Acids in Cell Culture for Quantitative Proteomics

  • Shao-En Ong
  • Matthias Mann
Part of the Methods in Molecular Biology book series (MIMB, volume 359)


Mass spectrometry (MS)-based quantitative proteomics is an increasingly popular approach to study changes in protein abundances in biological samples. Stable isotope labeling by amino acids in cell culture (SILAC), one of the more widely used methods for quantitative proteomics, is a metabolic-labeling strategy that encodes whole cellular proteomes. Cells are grown in a culture medium where the natural form of an amino acid is replaced with a stable isotope form, such as arginine bearing six 13C atoms. Incorporation of the “heavy” amino acid occurs through cell growth, protein synthesis, and turnover. SILAC allows “light” and “heavy” proteomes to be distinguished by MS while avoiding any chemical derivatization and associated purification. In this chapter, we provide detailed SILAC protocols and explain how to incorporate SILAC into any experiment.

Key Words

SILAC stable isotope labeling mass spectrometry proteomics gene expression 


  1. 1.
    Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262.CrossRefPubMedGoogle Scholar
  2. 2.
    Ong, S. E., Blagoev, B., Kratchmarova, I., et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu, H., Pan, S., Gu, S., Bradbury, E. M., and Chen, X. (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16, 2115–2123.CrossRefPubMedGoogle Scholar
  4. 4.
    Jiang, H. and English, A. M. (2002) Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J. Proteome Res. 1, 345–350.CrossRefPubMedGoogle Scholar
  5. 5.
    Everley, P. A., Krijgsveld, J., Zetter, B. R., and Gygi, S. P. (2004) Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell Proteomics 3, 729–735.CrossRefPubMedGoogle Scholar
  6. 6.
    Gu, S., Du, Y., Chen, J., et al. (2004) Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging. J. Proteome Res. 3, 1191–1200.CrossRefPubMedGoogle Scholar
  7. 7.
    Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J., and Mann, M. (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318.CrossRefPubMedGoogle Scholar
  8. 8.
    de Hoog, C. L., Foster, L. J., and Mann, M. (2004) RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 117, 649–662.CrossRefPubMedGoogle Scholar
  9. 9.
    Foster, L. J., De Hoog, C. L., and Mann, M. (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA 100, 5813–5818.CrossRefPubMedGoogle Scholar
  10. 10.
    Andersen, J. S., Lam, Y. W., Leung, A. K., et al. (2005) Nucleolar proteome dynamics. Nature 433, 77–83.CrossRefPubMedGoogle Scholar
  11. 11.
    Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145.CrossRefPubMedGoogle Scholar
  12. 12.
    Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., and Mann, M. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477.CrossRefPubMedGoogle Scholar
  13. 13.
    Pratt, J. M., Petty, J., Riba-Garcia, I., et al. (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics 1, 579–591.CrossRefPubMedGoogle Scholar
  14. 14.
    Doherty, M. K., Whitehead, C., McCormack, H., Gaskell, S. J., and Beynon, R. J. (2005) Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5, 522–533.CrossRefPubMedGoogle Scholar
  15. 15.
    Ibarrola, N., Molina, H., Iwahori, A., and Pandey, A. (2004) A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine. J. Biol. Chem. 279, 15,805–15,813.CrossRefPubMedGoogle Scholar
  16. 16.
    Ong, S. E., Mittler, G., and Mann, M. (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods 1, 119–126.CrossRefPubMedGoogle Scholar
  17. 17.
    Ibarrola, N., Kalume, D. E., Gronborg, M., Iwahori, A., and Pandey, A. (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem. 75, 6043–6049.CrossRefPubMedGoogle Scholar
  18. 18.
    Ballif, B. A., Roux, P. P., Gerber, S. A., MacKeigan, J. P., Blenis, J., and Gygi, S. P. (2005) Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc. Natl. Acad. Sci. USA 102, 667–672.CrossRefPubMedGoogle Scholar
  19. 19.
    Ishihama, Y., Sato, T., Tabata, T., et al. (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol. 23, 617–621.CrossRefPubMedGoogle Scholar
  20. 20.
    Schulze, W. X. and Mann, M. (2004) A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 279, 10,756–10,764.CrossRefPubMedGoogle Scholar
  21. 21.
    Gruhler, A., Olsen, J. V., Mohammed, S., et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteomics 4, 310–327.CrossRefPubMedGoogle Scholar
  22. 22.
    Gruhler, A., Schulze, W. X., Matthiesen, R., Mann, M., and Jensen, O. N. (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell Proteomics 4, 1697–1709.CrossRefPubMedGoogle Scholar
  23. 23.
    MacCoss, M. J. and Matthews, D. E. (2005) Quantitative MS for proteomics: teaching a new dog old tricks. Anal. Chem. 77, 294A–302A.PubMedGoogle Scholar
  24. 24.
    Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell Proteomics 3, 608–614.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang, R. and Regnier, F. E. (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. J. Proteome Res. 1, 139–147.CrossRefPubMedGoogle Scholar
  26. 26.
    Gehrmann, M. L., Hathout, Y., and Fenselau, C. (2004) Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J. Proteome Res. 3, 1063–1068.CrossRefPubMedGoogle Scholar
  27. 27.
    Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181.CrossRefPubMedGoogle Scholar
  28. 28.
    Ishihama, Y. (2005) Proteomic LC-MS systems using nanoscale liquid chromatography with tandem mass spectrometry. J. Chromatogr. A. 1067, 73–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Meng, F., Forbes, A. J., Miller, L. M., and Kelleher, N. L. (2005) Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrom. Rev. 24, 126–134.CrossRefPubMedGoogle Scholar
  30. 30.
    MacCoss, M. J., Wu, C. C., Liu, H., Sadygov, R., and Yates, J. R., 3rd (2003) A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem. 75, 6912–6921.CrossRefPubMedGoogle Scholar
  31. 31.
    Li, X. J., Zhang, H., Ranish, J. A., and Aebersold, R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75, 6648–6657.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Shao-En Ong
    • 1
  • Matthias Mann
    • 2
  1. 1.Proteomics and Biomarker DiscoveryThe Broad Institute of MIT and HarvardCambridge
  2. 2.Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany

Personalised recommendations