Advertisement

Trees from Trees: Construction of Phylogenetic Supertrees Using Clann

  • Christopher J. Creevey
  • James O. McInerney
Part of the Methods in Molecular Biology book series (MIMB, volume 537)

Abstract

Supertree methods combine multiple phylogenetic trees to produce the overall best “supertree.” They can be used to combine phylogenetic information from datasets only partially overlapping and from disparate sources (like molecular and morphological data), or to break down problems thought to be computationally intractable. Some of the longest standing phylogenetic conundrums are now being brought to light using supertree approaches. We describe the most widely used supertree methods implemented in the software program “clann” and provide a step by step tutorial for investigating phylogenetic information and reconstructing the best supertree. Clann is freely available for Windows, Mac and Unix/Linux operating systems under the GNU public licence at http://bioinf.nuim.ie/software/clann.

Key words

Supertree software phylogenetic reconstruction phylogeny congruency test phylogenetic signal detection 

References

  1. 1.
    Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. (1981) Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J Comput 10, 405–21.CrossRefGoogle Scholar
  2. 2.
    Gordon, A. D. (1986) Consensus supertrees: the synthesis of rooted trees containing overlapping sets of laballed leaves. J Classification 3, 335–48.CrossRefGoogle Scholar
  3. 3.
    Wilkinson, M., Cotton, J. A., Creevey, C., Eulenstein, O., Harris, S. R., Lapointe, F. J., Levasseur, C., McInerney, J. O., Pisani, D., and Thorley, J. L. (2005) The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Syst Biol 54, 419–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu, F. G., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291, 1786–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Beck, R. M., Bininda-Emonds, O. R., Cardillo, M., Liu, F. G., and Purvis, A. (2006) A higher-level MRP supertree of placental mammals. BMC Evol Biol 6, 93.PubMedCrossRefGoogle Scholar
  6. 6.
    Dagan, T., and Martin, W. (2006) The tree of one percent. Genome Biol 7, 118.PubMedCrossRefGoogle Scholar
  7. 7.
    Creevey, C. J., Fitzpatrick, D. A., Philip, G. K., Kinsella, R. J., O’Connell, M. J., Pentony, M. M., Travers, S. A., Wilkinson, M., and McInerney, J. O. (2004) Does a tree-like phylogeny only exist at the tips in the prokaryotes? Proc R Soc Lond B Biol Sci 271, 2551–8.CrossRefGoogle Scholar
  8. 8.
    McInerney, J. O., and Wilkinson, M. (2005) New methods ring changes for the tree of life. Trends Ecol Evol 20, 105–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Pollard, D. A., Iyer, V. N., Moses, A. M., and Eisen, M. B. (2006) Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet 2, e173.PubMedCrossRefGoogle Scholar
  10. 10.
    Doolittle, W. F. (1999) Lateral genomics. Trends Cell Biol 9, M5–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Jain, R., Rivera, M. C., and Lake, J. A. (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96, 3801–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia-Vallve, S., Romeu, A., and Palau, J. (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10, 1719–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E., and Stanhope, M. J. (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28, 281–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, J., and Salisbury, B. A. (2001) A tree obscured by vines: horizontal gene transfer and the median tree method of estimating species phylogeny. Pac Symp Biocomput, 571–82.Google Scholar
  15. 15.
    Dutta, C., and Pan, A. (2002) Horizontal gene transfer and bacterial diversity. J Biosci 27, 27–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Dagan, T., and Martin, W. (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104, 870–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Woese, C. R. (2002) On the evolution of cells. Proc Natl Acad Sci USA 99, 8742–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Doolittle, W. F. (1998) A paradigm gets shifty. Nature 392, 15–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Pisani, D., Cotton, J. A., and McInerney, J. O. (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24, 1752–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Hendy, M. D., and Penny, D. (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38, 297–309.CrossRefGoogle Scholar
  21. 21.
    Foster, P. G., and Hickey, D. A. (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48, 284–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J., and McLnerney, J. O. (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6, 29.PubMedCrossRefGoogle Scholar
  23. 23.
    Rokas, A., Williams, B. L., King, N., and Carroll, S. B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.PubMedCrossRefGoogle Scholar
  24. 24.
    Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., and Bork, P. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Philippe, H., Snell, E. A., Bapteste, E., Lopez, P., Holland, P. W., and Casane, D. (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21, 1740–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Tekaia, F., Lazcano, A., and Dujon, B. (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9, 550–7.PubMedGoogle Scholar
  27. 27.
    Snel, B., Huynen, M. A., and Dutilh, B. E. (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59, 191–209.Google Scholar
  28. 28.
    Huson, D. H., and Steel, M. (2004) Phylogenetic trees based on gene content. Bioinformatics 20, 2044–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Hahn, M. W., De Bie, T., Stajich, J. E., Nguyen, C., and Cristianini, N. (2005) Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15, 1153–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Novozhilov, A. S., Karev, G. P., and Koonin, E. V. (2005) Mathematical modeling of evolution of horizontally transferred genes. Mol Biol Evol 22, 1721–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Lake, J. A., and Rivera, M. C. (2004) Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol 21, 681–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Baum, B. R. (1992) Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10.CrossRefGoogle Scholar
  33. 33.
    Ragan, M. A. (1992) Matrix representation in reconstructing phylogenetic- relationships among the eukaryotes. Biosystems 28, 47–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Lapointe, F.-J., and Cucumel, G. (1997) The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Syst Biol 46, 306–12.CrossRefGoogle Scholar
  35. 35.
    Lapointe, F. J., and Levasseur, C. (2004) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life (Bininda-Emonds, O. R. P., Ed.), Vol. 4, Kluwer Academic, Dordrecht.Google Scholar
  36. 36.
    Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–25.PubMedGoogle Scholar
  37. 37.
    Creevey, C. J., and McInerney, J. O. (2005) Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21, 390–2.PubMedCrossRefGoogle Scholar
  38. 38.
    Swofford, D. L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  39. 39.
    Maddison, D. R., Swofford, D. L., and Maddison, W. P. (1997) Nexus: an extensible file format for systematic information. Syst Biol 46, 590–621.PubMedCrossRefGoogle Scholar
  40. 40.
    Page, R. D. M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–8.PubMedGoogle Scholar
  41. 41.
    Letunic, I., and Bork, P. (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–8.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christopher J. Creevey
    • 1
  • James O. McInerney
    • 2
  1. 1.EMBL HeidelbergHeidelbergGermany
  2. 2.Department of BiologyNational University of Ireland MaynoothKildareIreland

Personalised recommendations