Cell Fusion pp 75-97 | Cite as

Myoblast Fusion in Drosophila

  • Susan M. Abmayr
  • Shufei Zhuang
  • Erika R. Geisbrecht
Part of the Methods in Molecular Biology™ book series (MIMB, volume 475)


Myogenic differentiation in Drosophila melanogaster, as in many other organisms, involves the generation of multinucleate muscle fibers through the fusion of myoblasts. Prior to fusion, the myoblasts become specified as one of two distinct cell types. They then become competent to fuse and express genes associated with cell recognition and adhesion. Initially, cell-type– specific adhesion molecules mediate recognition and fusion between these two distinct populations of myoblasts. Intracellular proteins that are essential for the fusion process are then recruited to points of cell–cell contact at the membrane, where the cell surface molecules have become localized. Many of these cytosolic proteins contribute to reorganization of the cytoskeleton through activation of small guanosine triphosphatases and recruitment of actin nucleating proteins. Following the initial fusion event, the ultimate size of the syncytia is achieved through multiple rounds of fusion between the developing syncytia and mononucleate myoblasts. Ultrastructural changes associated with cell fusion include recruitment of electron-dense vesicles to points of cell–cell contact, resolution of these vesicles into fusion plaques, fusion pore formation, and membrane vesiculation. This chapter reviews our current understanding of the genes, pathways, and ultrastructural events associated with fusion in the Drosophila embryo, giving rise to multinucleate syncytia that will be used throughout larval life.

Key Words

Myoblast fusion adhesion Drosophila founder myoblast fusion-competent myoblast cytoskeleton 


  1. 1.
    Abmayr, S. M., Balagopalan, L., Galletta, B. J., Hong, S. J., Lawrence, I. G., Kostas, I., and Sarjeet, S. G. (2005) Comprehensive Molecular Insect Science. Elsevier, Amsterdam, pp. 1–43.CrossRefGoogle Scholar
  2. 2.
    Chen, E. H. and Olson, E. N. (2004) Towards a molecular pathway for myoblast fusion in Drosophila. Trends Cell Biol. 14, 452–460.CrossRefPubMedGoogle Scholar
  3. 3.
    Horsley, V. and Pavlath, G. K. (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176, 67–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Bate, M. (1990) The embryonic development of larval muscles in Drosophila. Development 110, 791–804.PubMedGoogle Scholar
  5. 5.
    Baylies, M. K. and Bate, M. (1996) twist: a myogenic switch in Drosophila. Science 272, 1481–1484.CrossRefPubMedGoogle Scholar
  6. 6.
    Carmena, A., Bate, M., and Jimenez, F. (1995) lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev. 9, 2373–2383.CrossRefPubMedGoogle Scholar
  7. 7.
    Baker, R. and Schubiger, G. (1996) Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila. Development 122, 617–626.PubMedGoogle Scholar
  8. 8.
    Bate, M. and Rushton, E. (1993) Myogenesis and muscle patterning in Drosophila. C.R. Acad. Sci. Ser. III 316, 1047–1061.PubMedGoogle Scholar
  9. 9.
    Corbin, V., Michelson, A. M., Abmayr, S. M., Neel, V., Alcamo, E., Maniatis, T., and Young, M. W. (1991) A role for the Drosophila neurogenic genes in mesoderm differentiation. Cell 67, 311–323.CrossRefPubMedGoogle Scholar
  10. 10.
    Bate, M., Rushton, E., and Frasch, M. (1993) A dual requirement for neurogenic genes in Drosophila myogenesis. Dev. Suppl. 149–161.Google Scholar
  11. 11.
    Bourgouin, C., Lundgren, S. E., and Thomas, J. B. (1992) apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron 9, 549–561.CrossRefPubMedGoogle Scholar
  12. 12.
    Dohrmann, C., Azpiazu, N., and Frasch, M. (1990) A new Drosophila homeobox gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Genes Dev. 4, 2098–2111.CrossRefPubMedGoogle Scholar
  13. 13.
    Frasch, M., Hoey, T., Rushlow, C., Doyle, H., and Levine, M. (1987) Characterization and localization of the even-skipped protein of Drosophila. EMBO J. 6, 749–759.PubMedGoogle Scholar
  14. 14.
    Keller, C. A., Grill, M. A., and Abmayr, S. M. (1998) A role for nautilus in the differentiation of muscle precursors. Dev. Biol. 202, 157–171.CrossRefPubMedGoogle Scholar
  15. 15.
    Knirr, S., Azpiazu, N., and Frasch, M. (1999) The role of the NK-homeobox gene slouch (S59) in somatic muscle patterning. Development 126, 4525–4535.PubMedGoogle Scholar
  16. 16.
    Nose, A., Isshiki, T., and Takeichi, M. (1998) Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene. Development 125, 215–223.PubMedGoogle Scholar
  17. 17.
    Nose, A., Mahajan, V. B., Goodman, C. S. (1992) Connectin: A homophilic cell adhesion molecule on a subset of muscles and the motoneurons that innervate them in Drosophila. Cell 70, 553–567.CrossRefPubMedGoogle Scholar
  18. 18.
    Ruiz-Gomez, M., Romani, S., Hartmann, C., Jackle, H., and Bate, M. (1997) Specific muscle identities are regulated by Kruppel during Drosophila embryogenesis. Development 124, 3407–3414.PubMedGoogle Scholar
  19. 19.
    Jagla, T., Bellard, F., Lutz, Y., Dretzen, G., Bellard, M., and Jagla, K. (1998) ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. Development 125, 3699–3708.PubMedGoogle Scholar
  20. 20.
    Duan, H., Skeath, J. B., and Nguyen, H. T. (2001) Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development 128, 4489–4500.PubMedGoogle Scholar
  21. 21.
    Furlong, E. E., Andersen, E. C., Null, B., White, K. P., and Scott, M. P. (2001) Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633.CrossRefPubMedGoogle Scholar
  22. 22.
    Ruiz-Gomez, M., Coutts, N., Suster, M. L., Landgraf, M., and Bate, M. (2002) myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-competent myoblasts in Drosophila. Development 129, 133–141.PubMedGoogle Scholar
  23. 23.
    Bour, B. A., Chakravarti, M., West, J. M., and Abmayr, S. M. (2000) Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev. 14, 1498–1511.PubMedGoogle Scholar
  24. 24.
    Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M. V., and Bate, M. (2000) Drosophila Dumbfounded: a myoblast attractant essential for fusion. Cell 102, 189–198.CrossRefPubMedGoogle Scholar
  25. 25.
    Strunkelnberg, M., Bonengel, B., Moda, L. M., Hertenstein, A., de Couet, H. G., Ramos, R. G., and Fischbach, K. F. (2001) rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128, 4229–4239.PubMedGoogle Scholar
  26. 26.
    Artero, R. D., Castanon, I., and Baylies, M. K. (2001) The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128, 4251– 4264.PubMedGoogle Scholar
  27. 27.
    Dworak, H. A., Charles, M. A., Pellerano, L. B., and Sink, H. (2001) Characterization of Drosophila hibris, a gene related to human nephrin. Development 128, 4265– 4276.PubMedGoogle Scholar
  28. 28.
    Dworak, H. A. and Sink, H. (2002) Myoblast fusion in Drosophila. BioEssays 24, 591–601.CrossRefPubMedGoogle Scholar
  29. 29.
    Ramos, R. G., Igloi, G. L., Lichte, B., Baumann, U., Maier, D., Schneider, T., Brandstatter, J. H., Frohlich, A., and Fischbach, K. F. (1993) The irregular chiasm C-roughest locus of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein. Genes Dev. 7, 2533– 2547.CrossRefPubMedGoogle Scholar
  30. 30.
    Strunkelnberg, M., de Couet, H. G., Hertenstein, A., and Fischbach, K. F. (2003) Interspecies comparison of a gene pair with partially redundant function: the rst and kirre genes in D. virilis and D. melanogaster. J. Mol. Evol. 56, 187–197.CrossRefPubMedGoogle Scholar
  31. 31.
    Klapper, R., Stute, C., Schomaker, O., Strasser, T., Janning, W., Renkawitz-Pohl, R., and Holz, A. (2002) The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech. Dev. 110, 85–96.CrossRefPubMedGoogle Scholar
  32. 32.
    San Martin, B. and Bate, M. (2001) Hindgut visceral mesoderm requires an ectodermal template for normal development in Drosophila. Development 128, 233–242.PubMedGoogle Scholar
  33. 33.
    Paululat, A., Burchard, S., and Renkawitz-Pohl, R. (1995) Fusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila. Development 121, 2611–2620.PubMedGoogle Scholar
  34. 34.
    Paululat, A., Goubeaud, A., Damm, C., Knirr, S., Burchard, S., and Renkawitz-Pohl, R. (1997) The mesodermal expression of rolling stone (rost) is essential for myoblast fusion in Drosophila and encodes a potential transmembrane protein. J. Cell Biol. 138, 337–348.CrossRefPubMedGoogle Scholar
  35. 35.
    Paululat, A., Holz, A., and Renkawitz-Pohl, R. (1999) Essential genes for myoblast fusion in Drosophila embryogenesis. Mech. Dev. 83, 17–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Kestila, M., Lenkkeri, U., Mannikko, M., Lamerdin, J., McCready, P. , Putaala, H., Ruotsalainen, V. , Morita, T., Nissinen, M., Peltonen, L., Holmberg, C., Olsen, A., and Tryggvason, K. (1998) Positionally cloned gene for a novel glomerular protein– Nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell 1, 572–582.CrossRefGoogle Scholar
  37. 37.
    Doberstein, S. K., Fetter, R. D., Mehta, A. Y., and Goodman, C. S. (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J. Cell Biol. 136, 1249–1261.CrossRefPubMedGoogle Scholar
  38. 38.
    Galletta, B. J., Chakravarti, M., Banerjee, R., and Abmayr, S. M. (2004) SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech. Dev. 121, 1455–1468.CrossRefPubMedGoogle Scholar
  39. 39.
    Kesper, D. A., Stute, C., Buttgereit, D., Kreiskother, N., Vishnu, S., Fischbach, K. F., and Renkawitz-Pohl, R. (2007) Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev. Dyn. 236, 404–415.CrossRefPubMedGoogle Scholar
  40. 40.
    Rash, J. E. and Fambrough, D. (1973) Ultrastructural and electrophysiological correlates of cell coupling and cytoplasmic fusion during myogenesis in vitro. Dev. Biol. 30, 166–186.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim, S., Shilagardi, K., Zhang, S., Hong, S. N., Sens, K. L., Bo, J., Gonzalez, G. A., and Chen, E. H. (2007) A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12, 571–586.CrossRefPubMedGoogle Scholar
  42. 42.
    Erickson, M. R. S., Galletta, B. J., and Abmayr, S. M. (1997) Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure and cytoskeletal organization. J. Cell Biol. 138, 589–603.CrossRefPubMedGoogle Scholar
  43. 43.
    Rushton, E., Drysdale, R., Abmayr, S. M., Michelson, A. M., and Bate, M. (1995) Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 121, 1979–1988.PubMedGoogle Scholar
  44. 44.
    Chen, E. H. and Olson, E. N. (2001) Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev. Cell 1, 705–715.CrossRefPubMedGoogle Scholar
  45. 45.
    Menon, S. D. and Chia, W. (2001) Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-titin in response to the myoblast attractant Dumbfounded. Dev. Cell 1, 691–703.CrossRefPubMedGoogle Scholar
  46. 46.
    Rau, A., Buttgereit, D., Holz, A., Fetter, R., Doberstein, S. K., Paululat, A., Staudt, N., Skeath, J., Michelson, A. M., and Renkawitz-Pohl, R. (2001) rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 128, 5061–5073.PubMedGoogle Scholar
  47. 47.
    Hakeda-Suzuki, S., Ng, J., Tzu, J., Dietzl, G., Sun, Y. , Harms, M., Nardine, T., Luo, L., and Dickson, B. J. (2002) Rac function and regulation during Drosophila development. Nature 416, 438–442.CrossRefPubMedGoogle Scholar
  48. 48.
    Massarwa, R., Carmon, S., Shilo, B. Z., and Schejter, E. D. (2007) WIP/ WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev. Cell 12, 557–569.CrossRefPubMedGoogle Scholar
  49. 49.
    Menon, S. D., Osman, Z., Chenchill, K., and Chia, W. (2005) A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila. J. Cell Biol. 169, 909–920.CrossRefPubMedGoogle Scholar
  50. 50.
    Abmayr, S. M., Balagopalan, L., Galletta, B. J., and Hong, S. J. (2003) Cell and molecular biology of myoblast fusion. Int. Rev. Cytol. 225, 33–89.CrossRefPubMedGoogle Scholar
  51. 51.
    Duchek, P., Somogyi, K., Jekely, G., Beccari, S., and Rorth, P. (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Nolan, K. M., Barrett, K., Lu, Y., Hu, K. Q., Vincent, S., Settleman, J. (1998) Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337–3342.CrossRefPubMedGoogle Scholar
  53. 53.
    Brugnera, E., Haney, L., Grimsley, C., Lu, M., Walk, S. F., Tosello-Trampont, A. C., Macara, I. G., Madhani, H., Fink, G. R., and Ravichandran, K. S. (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol. 4, 574–582.PubMedGoogle Scholar
  54. 54.
    Gumienny, T. L., Brugnera, E., Tosello-Trampont, A. C., Kinchen, J. M., Haney, L. B., Nishiwaki, K., Walk, S. F., Nemergut, M. E., Macara, I. G., Francis, R., Schedl, T., Qin, Y. , Van Aelst, L., Hengartner, M. O., and Ravichandran, K. S. (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41.CrossRefPubMedGoogle Scholar
  55. 55.
    Wu, Y. C., Tsai, M. C., Cheng, L. C., Chou, C. J., and Weng, N. Y. (2001) C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev. Cell 1, 491–502.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhou, Z., Caron, E., Hartwieg, E., Hall, A., and Horvitz, H. R. (2001) The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477–489.CrossRefPubMedGoogle Scholar
  57. 57.
    Hasegawa, H., Kiyokawa, E., Tanaka, S., Nagashima, K., Gotoh, N., Shibuya, M., Kurata, T., Matsuda, M. (1996) DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol. 16, 1770–1776.PubMedGoogle Scholar
  58. 58.
    Wu, Y. C. and Horvitz, H. R. (1998) C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504.CrossRefPubMedGoogle Scholar
  59. 59.
    Balagopalan, L., Chen, M. H., Geisbrecht, E. R., and Abmayr, S. M. (2006) The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk. Mol. Cell. Biol. 26, 9442–9455.CrossRefPubMedGoogle Scholar
  60. 60.
    Galletta, B. J., Niu, X. P., Erickson, M. R., and Abmayr, S. M. (1999) Identification of a Drosophila homologue to vertebrate Crk by interaction with MBC. Gene 228, 243–252.CrossRefPubMedGoogle Scholar
  61. 61.
    Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802.CrossRefPubMedGoogle Scholar
  62. 62.
    Ng, J., Nardine, T., Harms, M., Tzu, J., Goldstein, A., Sun, Y. , Dietzl, G., Dickson, B. J., and Luo, L. (2002) Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen, E. H., Pryce, B. A., Tzeng, J. A., Gonzalez, G. A., and Olson, E. N. (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114, 751–762.CrossRefPubMedGoogle Scholar
  64. 64.
    Onel, S., Bolke, L., and Klambt, C. (2004) The Drosophila ARF6-GEF Schizzo controls commissure formation by regulating Slit. Development 131, 2587–2594.CrossRefPubMedGoogle Scholar
  65. 65.
    Donaldson, J. G. (2003) Myoblasts fuse when loner meets ARF6. Dev. Cell 5, 527–528.CrossRefPubMedGoogle Scholar
  66. 66.
    Schroter, R. H., Lier, S., Holz, A., Bogdan, S., Klambt, C., Beck, L., and Renkawitz-Pohl, R. (2004) kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila. Development 131, 4501–4509.CrossRefPubMedGoogle Scholar
  67. 67.
    Schafer, G., Weber, S., Holz, A., Bogdan, S., Schumacher, S., Muller, A., Renkawitz-Pohl, R., and Onel, S. F. (2007) The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev. Biol. 304, 664–674.CrossRefPubMedGoogle Scholar
  68. 68.
    Machado, C., Andrew, D. J. (2000) D-titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151, 639–652.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang, Y., Featherstone, D., Davis, W., Rushton, E., and Broadie, K. (2000) Drosophila D-titin is required for myoblast fusion and skeletal muscle striation. J. Cell Sci. 113, 3103–3115.PubMedGoogle Scholar
  70. 70.
    Estrada, B., Maeland, A. D., Gisselbrecht, S. S., Bloor, J. W., Brown, N. H., and Michelson, A. M. (2007) The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. Dev. Biol. 307, 328–339.CrossRefPubMedGoogle Scholar
  71. 71.
    Beckett K, B. M. (2006) Parcas, a regulator of non-receptor tyrosine kinase signaling, acts during anterior–posterior patterning and somatic muscle development in Drosophila melanogaster. Dev. Biol. 299, 176–192.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Susan M. Abmayr
    • 1
  • Shufei Zhuang
    • 1
  • Erika R. Geisbrecht
    • 1
  1. 1.The Stowers Institute for Medical ResearchKansas City

Personalised recommendations