Wnt Signaling pp 99-110

Part of the Methods in Molecular Biology™ book series (MIMB, volume 468)

Assaying β-Catenin/TCF Transcription with β-Catenin/TCF Transcription-Based Reporter Constructs

  • Travis L. Biechele
  • Randall T. Moon

Abstract

Transcription-based reporters have been instrumental in characterizing the Wnt/β-catenin signaling pathway and will be essential in the search for therapeutics aimed at combating diseases linked to aberrant signaling. In this chapter, we introduce a new improved Wnt/β-catenin reporter system, β-catenin-activated reporter (BAR), and its accompanying control reporter system, found unresponsive BAR (fuBAR). Its enhanced sensitivity, increased dynamic range, and lentiviral platform provide a reporter system that will keep pace with the needs of scientists in the field.

Key words

Wnt b-Catenin Luciferase Transcription Reporter BAR TCF LEF 

References

  1. 1.
    Nusslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.CrossRefGoogle Scholar
  2. 2.
    McMahon, A.P. and Moon, R.T. (1989). Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084.CrossRefPubMedGoogle Scholar
  3. 3.
    Jue, S.F., Bradley, R.S., Rudnicki, J.A., Varmus, H.E., and Brown, A.M. (1992). The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol Cell Biol 12, 321–328.PubMedGoogle Scholar
  4. 4.
    Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B., and Clevers, H. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC -/- colon carcinoma. Science 275, 1784 –1787.CrossRefPubMedGoogle Scholar
  5. 5.
    Veeman, M.T., Slusarski, D.C., Kaykas, A., Louie, S.H., and Moon, R.T. (2003). Zebrafish prickle, a modulator of non-canonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13, 680–685.CrossRefPubMedGoogle Scholar
  6. 6.
    DasGupta, R., Kaykas, A., Moon, R.T., and Perrimon, N. (2005). Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308, 826–833.CrossRefPubMedGoogle Scholar
  7. 7.
    Rekas, A., Alattia, J.R., Nagai, T., Miyawaki, A., and Ikura, M. (2002). Crystal structure of Venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem 277, 50573–50578.CrossRefPubMedGoogle Scholar
  8. 8.
    Barolo, S., and Posakony, J.W. (2002). Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 16, 1167–1181.CrossRefPubMedGoogle Scholar
  9. 9.
    Olson, L.E., Tollkuhn, J., Scafoglio, C., Krones, A., Zhang, J., Ohgi, K.A., Wu, W., Taketo, M.M., Kemler, R., Grosschedl, R., et al. (2006). Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125, 593–605.CrossRefPubMedGoogle Scholar
  10. 10.
    Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W., Weissman, I. L., Reya, T., et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423, 448–452.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Travis L. Biechele
    • 1
  • Randall T. Moon
    • 1
  1. 1.Howard Hughes Medical Institute and Department of Pharmacology and Institute for Stem Cell and Regenerative MedicineUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations