Wnt Signaling pp 5-15

Part of the Methods in Molecular Biology™ book series (MIMB, volume 468)

The Canonical Wnt/β-Catenin Signalling Pathway

  • Nick Barker

Abstract

Embryonic development of multicellular organisms is an incredibly complex process that relies heavily on evolutionarily conserved signalling pathways to provide crucial cell cell communication. Typically, secreted signalling proteins such as Wnts, BMPs, and Hedgehogs released by one cell population will trigger concentration-dependent responses in other cells located some distance away. In adults, the same signalling pathways orchestrate tissue renewal in organs such as the intestine and skin, and direct tissue regeneration in many organs following injury. Strict regulation of these signalling pathways is critical, with insufficient or excess activity having catastrophic consequences including severe developmental defects or, later in life, cancer. This chapter deals with the β-catenin-dependent branch of Wnt signalling (also referred to the canonical pathway).

Key words

Wnt Morphogen β-catenin Groucho Tcf Target gene Constitutive activation Stem cell Colon cancer 

References

  1. 1.
    Nusse, R. and Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109.CrossRefPubMedGoogle Scholar
  2. 2.
    Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse R. (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50>, 649–657.CrossRefPubMedGoogle Scholar
  3. 3.
    McMahon, A. P. and Moon, R. T. (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075– 1084.CrossRefPubMedGoogle Scholar
  4. 4.
    Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480.CrossRefPubMedGoogle Scholar
  5. 5.
    Barker, N. and Clevers, H. (2006) Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov. 5, 997–1014.CrossRefPubMedGoogle Scholar
  6. 6.
    Coudreuse, D. and Korswagen, H. C. (2007) The making of Wnt: new insights into Wnt maturation, sorting and secretion. Development 134, 3–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Miller J. R. (2002) The Wnts. Genome Biol. 3, REVIEWS3001.Google Scholar
  8. 8.
    Willert, K., Brown, J. D., Danenberg, E., Duncan, A.W., Weissman, I. L., Reya, T., et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452.CrossRefPubMedGoogle Scholar
  9. 9.
    Mikels, A. J. and Nusse, R. (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25, 7461–7468.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhai, L., Chatur vedi, D., and Cumberledge, S. (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279, 33220–33227.CrossRefPubMedGoogle Scholar
  11. 11.
    Tanaka, K., Kitagawa, Y., and Kadowaki, T. (2002) Drosophila segment polarity gene product porcupine stimulates the post-translational N-glycosylation of wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816–12823.CrossRefPubMedGoogle Scholar
  12. 12.
    Hofmann, K. (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25, 111–112.CrossRefPubMedGoogle Scholar
  13. 13.
    Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., and Basler, K. (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522.CrossRefPubMedGoogle Scholar
  14. 14.
    Bartscherer, K., Pelte, N., Ingelfinger, D., and Boutros, M. (2006) Secretion of Wnt ligands requires Evi, a conserved trans-membrane protein. Cell 125, 523–533.CrossRefPubMedGoogle Scholar
  15. 15.
    Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O., and Korswagen H. C. (2006) Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924.CrossRefPubMedGoogle Scholar
  16. 16.
    Logan, C. Y. and Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781–810.CrossRefPubMedGoogle Scholar
  17. 17.
    Panakova, D., Sprong, H., Marois, E., Thiele, C., and Eaton S. (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Lin, X. (2004) Functions of heparan sulfate proteoglycans in cell signaling during devel opment. Development 131, 6009–6021.CrossRefPubMedGoogle Scholar
  19. 19.
    Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D., and Kornberg, T. B. (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437, 560–563.CrossRefPubMedGoogle Scholar
  20. 20.
    Katoh, M. (2005) WNT/PCP signaling pathway and human cancer (review). Oncol. Rep. 14, 1583–1588.PubMedGoogle Scholar
  21. 21.
    Kohn, A. D. and Moon, R. T. (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell. Calcium 38, 439–446.CrossRefPubMedGoogle Scholar
  22. 22.
    Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., et al. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877.CrossRefPubMedGoogle Scholar
  23. 23.
    Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J. 16, 3797–3804.CrossRefPubMedGoogle Scholar
  24. 24.
    Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., et al. (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608.CrossRefPubMedGoogle Scholar
  25. 25.
    Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., et al. (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related tran-scriptional repressors. Nature 395, 608–612.CrossRefPubMedGoogle Scholar
  26. 26.
    Wallingford, J.B. and Habas, R. (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436.CrossRefPubMedGoogle Scholar
  27. 27.
    Davidson, G., Wu, W., Shen, J., Bilic, J., Fenger, U., Stannek, P., et al. (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872.CrossRefPubMedGoogle Scholar
  28. 28.
    Bilic, J., Huang, Y. L., Davidson, G., Zim-mermann, T., Cruciat, C.M., Bienz, M., et al. (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622.CrossRefPubMedGoogle Scholar
  29. 29.
    Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K.W., et al. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma. Science 275, 1784–1787.CrossRefPubMedGoogle Scholar
  30. 30.
    van de Wetering, M. and Clevers, H. (1992) Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson—Crick double helix. Embo J. 11, 3039–3044.PubMedGoogle Scholar
  31. 31.
    Stadeli, R., Hoffmans, R., and Basler, K. (2006) Transcription under the control of nuclear Arm/beta-catenin. Curr. Biol. 16, R378–385.CrossRefPubMedGoogle Scholar
  32. 32.
    Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.CrossRefPubMedGoogle Scholar
  33. 33.
    Molenaar, M., van de Wetering, M., Oost-erwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., et al. (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 86, 391–399.CrossRefPubMedGoogle Scholar
  34. 34.
    van de Wetering, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., et al. (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799.CrossRefPubMedGoogle Scholar
  35. 35.
    Daniels, D. L. and Weis, W. I. (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12, 364–371.CrossRefPubMedGoogle Scholar
  36. 36.
    Townsley, F. M., Thompson, B., and Bienz, M.(2004) Pygopus residues required for its binding to Legless are critical for transcription and development. J. Biol. Chem. 279, 5177–5183.CrossRefPubMedGoogle Scholar
  37. 37.
    Hoffmans, R., Stadeli, R., and Basler, K. (2005) Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin. Curr. Biol. 15, 1207–1211.CrossRefPubMedGoogle Scholar
  38. 38.
    Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383.CrossRefPubMedGoogle Scholar
  39. 39.
    Reya, T. and Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature 434, 843–850.CrossRefPubMedGoogle Scholar
  40. 40.
    van Es, J. H., Jay, P., Gregorieff, A., van Gijn, M. E., Jonkheer, S., Hatzis, P., et al.(2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat. Cell Biol. 7, 381–386.CrossRefPubMedGoogle Scholar
  41. 41.
    van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., et al. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250.CrossRefPubMedGoogle Scholar
  42. 42.
    Van der Flier, L. G., Sabates-Bellver, J., Oving, I., Haegebar th, A., De Palo, M., Anti, M., et al. (2007) The intestinal Wnt/TCF signature. Gastroenterology 132, 628–632.CrossRefPubMedGoogle Scholar
  43. 43.
    Sansom, O. J., Reed, K. R., Hayes, A. J., Ireland, H., Brinkmann, H., Newton, I. P., et al. (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390.CrossRefPubMedGoogle Scholar
  44. 44.
    Batlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M., Sancho, E., Huls, G., et al. (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ ephrinB. Cell 111, 251–263.CrossRefPubMedGoogle Scholar
  45. 45.
    Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790.CrossRefPubMedGoogle Scholar
  46. 46.
    Polakis, P. (2000) Wnt signaling and cancer. Genes Dev. 4, 1837–1851.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nick Barker
    • 1
  1. 1.Hubrecht Institute for Developmental Biology and Stem Cell ResearchUtrechtThe Netherlands

Personalised recommendations