RNA pp 293-309 | Cite as

Polysome Analysis and RNA Purification from Sucrose Gradients

  • Tomáš Mašek
  • Leoš Valášek
  • Martin Pospíšek
Part of the Methods in Molecular Biology book series (MIMB, volume 703)


Velocity separation of translation complexes in linear sucrose gradients is the ultimate method for both analysis of the overall fitness of protein synthesis as well as for detailed investigation of physiological roles played by individual factors of the translational machinery. Polysome profile analysis is a frequently performed task in translational control research that not only enables direct monitoring of the efficiency of translation but can easily be extended with a wide range of downstream applications such as Northern and Western blotting, genome-wide microarray analysis or qRT-PCR. This chapter provides a basic overview of the polysome profile analysis technique and the RNA isolation procedure from sucrose gradients. We also discuss possible experimental pitfalls of data normalization, describe main alternatives of the basic protocol and outline a novel application of denaturing RNA electrophoresis in several steps of polysome profile analysis.

Key words

Translational control polysome profile RNA isolation sucrose gradient RNA denaturing electrophoresis 



This work was supported by Czech Science Foundation grant No. 301/07/0607, Ministry of Education, Youth and Sports of the Czech Republic grant No. LC06066 (both to MP). LV was supported by The Wellcome Trusts grant No. 076456/Z/05/Z, Fellowship of Jan E. Purkyne from Academy of Sciences of the Czech Republic, and Inst. Research Concept AV0Z50200510.


  1. 1.
    Hershey, J. W. B., Merrick, W. C. (2000) Pathway and mechanism of initiation of protein synthesis, in (Sonenberg, N., Hershey, J. W. B. and Mathews, M. B., eds.), Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 33–88.Google Scholar
  2. 2.
    Warner, J. R., Knopf, P. M., Rich, A. (1963) A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci USA 49, 122–129.CrossRefPubMedGoogle Scholar
  3. 3.
    Dickson, L. M., Brown, A. J. (1998) mRNA translation in yeast during entry into stationary phase. Mol Gen Genet 259, 282–293.CrossRefPubMedGoogle Scholar
  4. 4.
    Kuhn, K. M., DeRisi, J. L., Brown, P. O., Sarnow, P. (2001) Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol 21, 916–927.CrossRefPubMedGoogle Scholar
  5. 5.
    Ashe, M. P., De Long, S. K., Sachs, A. B. (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11, 833–848.PubMedGoogle Scholar
  6. 6.
    Uesono, Y., Toh, E. A. (2002) Transient inhibition of translation initiation by osmotic stress. J Biol Chem 277, 13848–13855.CrossRefPubMedGoogle Scholar
  7. 7.
    Swaminathan, S., Masek, T., Molin, C., Pospisek, M., Sunnerhagen, P. (2006) Rck2 is required for reprogramming of ribosomes during oxidative stress. Mol Biol Cell 17, 1472–1482.CrossRefPubMedGoogle Scholar
  8. 8.
    Asp, E., Nilsson, D., Sunnerhagen, P. (2008) Fission yeast mitogen-activated protein kinase Sty1 interacts with translation factors. Eukaryotic Cell 7, 328–338.CrossRefPubMedGoogle Scholar
  9. 9.
    Van Ryk, D. I., Lee, Y., Nazar, R. N. (1992) Unbalanced ribosome assembly in Saccharomyces cerevisiae expressing mutant 5 S rRNAs. J Biol Chem 267, 16177–16181.PubMedGoogle Scholar
  10. 10.
    Martin-Marcos, P., Hinnebusch, A. G., Tamame, M. (2007) Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol Cell Biol 27, 5968–5985.CrossRefPubMedGoogle Scholar
  11. 11.
    Valasek, L., Nielsen, K. H., Hinnebusch, A. G. (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21, 5886–5898.CrossRefPubMedGoogle Scholar
  12. 12.
    Jivotovskaya, A. V., Valasek, L., Hinnebusch, A. G., Nielsen, K. H. (2006) Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol 26, 1355–1372.CrossRefPubMedGoogle Scholar
  13. 13.
    Kainuma, M., Hershey, J. W. B. (2001) Depletion and deletion analyses of eucaryotic translation initiation factor 1A in Saccharomyces cerevisiae. Biochimie 83, 505–514.CrossRefPubMedGoogle Scholar
  14. 14.
    Gross, J. D., Moerke, N. J., von der Haar, T., Lugovskoy, A. A., Sachs, A. B., McCarthy, J. E., Wagner, G. (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115, 739–750.CrossRefPubMedGoogle Scholar
  15. 15.
    Sagliocco, F. A., Vega Laso, M. R., Zhu, D., Tuite, M. F., McCarthy, J. E., Brown, A. J. (1993) The influence of 5-secondary structures upon ribosome binding to mRNA during translation in yeast. J Biol Chem 268, 26522–26530.PubMedGoogle Scholar
  16. 16.
    Seggerson, K., Tang, L., Moss, E. G. (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243, 215–225.CrossRefPubMedGoogle Scholar
  17. 17.
    Nottrott, S., Simard, M. J., Richter, J. D. (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13, 1108–1114.CrossRefPubMedGoogle Scholar
  18. 18.
    Irwin, C. C., Akagi, J. M., Himes, R. H. (1973) Ribosomes, polyribosomes, and deoxyribonucleic acid from thermophilic mesophilic, and psychrophilic clostridia. J Bacteriol 113, 252–262.PubMedGoogle Scholar
  19. 19.
    Xia, B., Etchegaray, J. P., Inouye, M. (2001) Nonsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli. J Biol Chem 276, 35581–35588.CrossRefPubMedGoogle Scholar
  20. 20.
    Breen, M. D., Whitehead, E. I., Kenefick, D. G. (1972) Requirement for Extraction of Polyribosomes from Barley Tissue. Plant Physiol 49, 733–739.CrossRefPubMedGoogle Scholar
  21. 21.
    Davies, E., Larkins, B. A., Knight, R. H. (1972) Polyribosomes from Peas: an improved method for their isolation in the absence of ribonuclease inhibitors. Plant Physiol 50, 581–584.CrossRefPubMedGoogle Scholar
  22. 22.
    Tscherne, J. S., Pestka, S. (1975) Inhibition of protein synthesis in intact HeLa cells. Antimicrob Agents Chemother 8, 479–487.PubMedGoogle Scholar
  23. 23.
    Wei, C. L., MacMillan, S. E., Hershey, J. W. (1995) Protein synthesis initiation factor eIF-1A is a moderately abundant RNA-binding protein. J Biol Chem 270, 5764–5771.CrossRefPubMedGoogle Scholar
  24. 24.
    Tas, P. W., Martini, O. H. (1986) Effects of addition of derived 40 S subunits on translation rate and polysome profile of the reticulocyte lysate. Biochim Biophys Acta 866, 75–82.PubMedGoogle Scholar
  25. 25.
    Nielsen, K. H., Szamecz, B., Valasek, L., Jivotovskaya, A., Shin, B. S., Hinnebusch, A. G. (2004) Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 23, 1166–1177.CrossRefPubMedGoogle Scholar
  26. 26.
    Nelson, P. T., Hatzigeorgiou, A. G., Mourelatos, Z. (2004) miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10, 387–394.CrossRefPubMedGoogle Scholar
  27. 27.
    Shenton, D., Smirnova, J. B., Selley, J. N., Carroll, K., Hubbard, S. J., Pavitt, G. D., Ashe, M. P., Grant, C. M. (2006) Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 281, 29011–29021.CrossRefPubMedGoogle Scholar
  28. 28.
    Smirnova, J. B., Selley, J. N., Sanchez-Cabo, F., Carroll, K., Eddy, A. A., McCarthy, J. E. G., Hubbard, S. J., Pavitt, G. D., Grant, C. M., Ashe, M. P. (2005) Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. Mol Cell Biol 25, 9340–9349.CrossRefPubMedGoogle Scholar
  29. 29.
    MacKay, V. L., Li, X., Flory, M. R., Turcott, E., Law, G. L., Serikawa, K. A., Xu, X. L., Lee, H., Goodlett, D. R., Aebersold, R., Zhao, L. P., Morris, D. R. (2004) Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone. Mol Cell Proteomics 3, 478–489.CrossRefPubMedGoogle Scholar
  30. 30.
    Arava, Y., Wang, Y., Storey, J. D., Liu, C. L., Brown, P. O., Herschlag, D. (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100, 3889–3894.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang, Y., Ringquist, S., Cho, A. H., Rondeau, G., Welsh, J. (2004) High-throughput polyribosome fractionation. Nucleic Acids Res 32, e79.CrossRefPubMedGoogle Scholar
  32. 32.
    Stocklein, W., Piepersberg, W. (1980) Binding of cycloheximide to ribosomes from wild-type and mutant strains of Saccharomyces cerevisiae. Antimicrob Agents Chemother 18, 863–867.PubMedGoogle Scholar
  33. 33.
    Obrig, T. G., Culp, W. J., McKeehan, W. L., Hardesty, B. (1971) The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 246, 174–181.PubMedGoogle Scholar
  34. 34.
    Pestova, T. V., Hellen, C. U. (2003) Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev17, 181–186.CrossRefPubMedGoogle Scholar
  35. 35.
    Ortiz, P. A., Kinzy, T. G. (2005) Dominant-negative mutant phenotypes and the regulation of translation elongation factor 2 levels in yeast. Nucleic Acids Res 33, 5740–5748.CrossRefPubMedGoogle Scholar
  36. 36.
    Asano, K., Clayton, J., Shalev, A., Hinnebusch, A. G. (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14, 2534–2546.CrossRefPubMedGoogle Scholar
  37. 37.
    Asano, K., Shalev, A., Phan, L., Nielsen, K., Clayton, J., Valasek, L., Donahue, T. F., Hinnebusch, A. G. (2001) Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J 20, 2326–2337.CrossRefPubMedGoogle Scholar
  38. 38.
    Hradec, J., Dusek, Z. (1978) All factors required for protein synthesis are retained on heparin bound to Sepharose. Biochem J 172, 1–7.PubMedGoogle Scholar
  39. 39.
    Waldman, A. A., Marx, G., Goldstein, J. (1975) Isolation of rabbit reticulocyte initiation factors by means of heparin bound to sepharose. Proc Natl Acad Sci USA 72, 2352–2356.CrossRefPubMedGoogle Scholar
  40. 40.
    Valasek, L., Szamecz, B., Hinnebusch, A. G., Nielsen, K. H. (2007) In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzymol 429, 163–183.CrossRefPubMedGoogle Scholar
  41. 41.
    Martin, T. E., Hartwell, L. H. (1970) Resistance of active yeast ribosomes to dissociation by KCl. J Biol Chem 245, 1504–1506.PubMedGoogle Scholar
  42. 42.
    Masek, T., Vopalensky, V., Suchomelova, P., Pospisek, M. (2005) Denaturing RNA electrophoresis in TAE agarose gels. Anal Biochem 336, 46–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Clancy, J. L., Nousch, M., Humphreys, D. T., Westman, B. J., Beilharz, T. H., Preiss, T. (2007) Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol 431, 83–111.CrossRefPubMedGoogle Scholar
  44. 44.
    Luthe, D. S. (1983) A simple technique for the preparation and storage of sucrose gradients. Anal Biochem 135, 230–232.CrossRefPubMedGoogle Scholar
  45. 45.
    Schwer, B., Mao, X., Shuman, S. (1998) Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res 26, 2050–2057.CrossRefPubMedGoogle Scholar
  46. 46.
    Powers, T., Noller, H. F. (1990) Dominant lethal mutations in a conserved loop in 16S rRNA. Proc Natl Acad Sci USA 87, 1042–1046.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tomáš Mašek
    • 1
  • Leoš Valášek
    • 2
  • Martin Pospíšek
    • 3
  1. 1.Department of Genetics and MicrobiologyCharles University in PraguePragueCzech Republic
  2. 2.Laboratory of Regulation of Gene ExpressionInstitute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Department of Genetics and Microbiology, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations