RNA pp 247-263 | Cite as

RIP-Chip Analysis: RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling

  • Ritu Jain
  • Tiffany Devine
  • Ajish D. George
  • Sridar V. Chittur
  • Timothy E. Baroni
  • Luiz O. Penalva
  • Scott A. Tenenbaum
Part of the Methods in Molecular Biology book series (MIMB, volume 703)


Post-transcriptional regulation of gene expression plays an important role in complex cellular processes. Just like transcription factors regulate gene expression through combinatorial binding to multiple, physically dispersed cis elements, mRNA binding proteins can regulate the translation of functionally related gene products by coordinately binding to subsets of mRNAs. The networks of mRNA binding proteins that facilitate this fine-tuning of gene expression are poorly understood. By combining genomic technologies with standard molecular biology tools, we have helped pioneer the development of high-throughput technologies for the global analysis of subsets of mRNAs bound to RNA-binding proteins. This technique is termed RIP-Chip and stands for RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling. This approach is also referred to as “ribonomic profiling” and has revealed valuable information about the workings of mRNP networks in the cell and the regulation of gene expression. In this chapter, we describe the latest advances that we have made in the RIP-CHIP technology.

Key words

Post-transcriptional gene regulation Ribonomics RIP-Chip RNA-binding Protein (RBP) Immunoprecipitation (IP) microarray microarray expression profiling array systems biology 



We would like to acknowledge the expert technical help from David Frank and Marcy Kuentzel of the microarray core, Center for Functional Genomics, University at Albany-SUNY and input from the other Tenenbaum Lab members. This work was supported in part by NIH grant U01HG004571 to SAT from the NHGRI.


  1. 1.
    Orphanides, G., Reinberg, D. (2002) A unified theory of gene expression. Cell 108, 439–451.CrossRefPubMedGoogle Scholar
  2. 2.
    Moore, M. J. (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518.CrossRefPubMedGoogle Scholar
  3. 3.
    Keene, J. D. (2001) Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci USA 98, 7018–7024.CrossRefPubMedGoogle Scholar
  4. 4.
    Sanchez-Diaz, P., Penalva, L. O. (2006) Post-transcription meets post-genomic: the saga of RNA binding proteins in a new era. RNA Biol 3, 101–109, Review.PubMedGoogle Scholar
  5. 5.
    King, M. L., Messitt, T. J., Mowry, K. L. (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97, 19–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Feng, Y., Absher, D., Eberhardt, D. E., Brown, V., Malter, H. E., Warren, S. T. (1997) FMRP associates with polyribosomes as an mRNP and the I304N mutation of severe fragile-X-syndrome abolishes this association. Mol Cell 1, 109–118.CrossRefPubMedGoogle Scholar
  7. 7.
    Bassell, G. J., Warren, S. T. (2008) Fragile X Syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214.CrossRefPubMedGoogle Scholar
  8. 8.
    Klausner, R. D., Rouault, T. A., Harford, J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19–26.CrossRefPubMedGoogle Scholar
  9. 9.
    López de Silanes, I., Lal, A., Gorospe, M. (2005) HuR: Post-transcriptional paths to malignancy. RNA Biol 2, 11–13.PubMedGoogle Scholar
  10. 10.
    Kato, T., Hayama, S., Yamabuki, T., Ishikawa, N., Miyamoto, M., Ito, T., Tsuchiya, E., Kondo, S., Nakamura, Y., Daigo, Y. (2007) Increased expression of insulin-like growth factor-II messenger RNA binding protein-1 is associated with tumor progression in patients with lung cancer. Clin Cancer Res 13, 434–442.CrossRefPubMedGoogle Scholar
  11. 11.
    Keene, J. D., Tenenbaum, S. A. (2002) Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 9, 1161–1167.CrossRefPubMedGoogle Scholar
  12. 12.
    Hieronymus, H., Silver, P. (2004) A systems view of mRNP biology. Genes Dev 18, 2845–2860.CrossRefPubMedGoogle Scholar
  13. 13.
    Tenenbaum, S. A., Carson, C. C., Lager, P. J., Keene, J. D. (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97, 14085–14090.CrossRefPubMedGoogle Scholar
  14. 14.
    Tenenbaum, S. A., Lager, P. J., Carson, C. C., Keene, J. D. (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26, 191–198.CrossRefPubMedGoogle Scholar
  15. 15.
    Penalva, L. O., Tenenbaum, S. A., Keene, J. D. (2004) Gene Expression Analysis of Messenger RNP Complexes. Methods Mol Biol 257, 125–134.PubMedGoogle Scholar
  16. 16.
    Brown, V., Jin, P., Ceman, S., Darnell, J. C., O’Donnell, W. T., Tenenbaum, S. A., Jin, X., Feng, Y., Wilkinson, K. D., Keene, J. D., Darnell, R. B., Warren, S. T. (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487.CrossRefPubMedGoogle Scholar
  17. 17.
    Eystathioy, T., Chan, E. K., Tenenbaum, S. A., Keene, J. D., Griffith, K., Fritzler, M. J. (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13, 1338–1351.CrossRefPubMedGoogle Scholar
  18. 18.
    Intine, R. V., Tenenbaum, S. A., Sakulich, A. L., Keene, J. D., Mariah, R. J. (2003) Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell 12, 1301–1307.CrossRefPubMedGoogle Scholar
  19. 19.
    Tenenbaum, S. A., Carson, C. C., Atasoy, U., Keene, J. D. (2003) Genome-wide regulatory analysis using en masse nuclear run-ons and ribonomic profiling with autoimmune sera. Gene 317, 79–87.CrossRefPubMedGoogle Scholar
  20. 20.
    Stoecklin, G., Tenenbaum, S. A., Mayo, T., Chittur, S. V., George, A. D., Baroni, T. E., Blackshear, P. J., Anderson, P. (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283, 11689–11699.CrossRefPubMedGoogle Scholar
  21. 21.
    Sanchez-diaz, P. C., Burton, T. L., Burns, S. C., Hung, J. Y., Penalva, L. O. (2008) Musashi modulates cell proliferation genes in the medulloblastoma cell line Daoy. BMC Cancer 8, 280.CrossRefPubMedGoogle Scholar
  22. 22.
    Lopez-de-Silanes, I., Fan, J., Yang, X., Zonderman, A. B., Potapova, O., Pizer, E. S., Gorospe, M. (2003) Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 22, 7146–7154.CrossRefPubMedGoogle Scholar
  23. 23.
    Mazan-Mamczarz, K., Patrick, R. H., Dai, B., Wood, W. H., Zhang, Y., Becker, K. G., Liu, Z., Gartenhaus, R. B. (2008) Identification of transformation-related pathways in a breast epithelial cell model using a ribonomics approach. Cancer Res 68, 7730–7735.CrossRefPubMedGoogle Scholar
  24. 24.
    Mazan-Mamczarz, K., Hagner, P. R., Corl, S., Srikantan, S., Wood, W. H., Becker, K. G., Gorospe, M., Keene, J. D., Levenson, A. S., Gartenhaus, R. B. (2008) Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype. Oncogene 27, 6151–6163.CrossRefPubMedGoogle Scholar
  25. 25.
    Gerber, A. P., Herschlag, D., Brown, P. O. (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2, E79.CrossRefPubMedGoogle Scholar
  26. 26.
    Gerber, A. P., Luschnig, S., Krasnow, M. A., Brown, P. O., Herschlag, D. (2006) Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA 103, 4487–4492.CrossRefPubMedGoogle Scholar
  27. 27.
    Galgano, A., Forrer, M., Jaskiewicz, L., Kanitz, A., Zavolan, M., Gerber, A. P. (2008) Comparative analysis of mRNA targets of the human PUF-family proteins suggests an extensive interaction with the miRNA regulatory system. PLoS One 3, e3164.CrossRefPubMedGoogle Scholar
  28. 28.
    Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., Brown, P. O. (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6, e255.CrossRefPubMedGoogle Scholar
  29. 29.
    Hieronymus, H., Silver, P. A. (2003) Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 33, 155–161.CrossRefPubMedGoogle Scholar
  30. 30.
    Furic, L., Maher-Laporte, M., Desgroseillers, L. (2008) A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA 14, 324–335.CrossRefPubMedGoogle Scholar
  31. 31.
    Townley-Tilson, W. H., Pendergrass, S. A., Marzluff, W. F., Whitfield, M. L. (2006) Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA 12, 1853–1867.CrossRefPubMedGoogle Scholar
  32. 32.
    Duttagupta, R., Tian, B., Wilusz, C. J., Khounh, T. J., Soteropoulos, P., Ouyang, M., Dougherty, J. P., Peltz, S. W. (2005) Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol Cell Biol 25, 5499–5513.CrossRefPubMedGoogle Scholar
  33. 33.
    Duan, R., Jin, P. (2006) Identification of messenger RNAs and microRNAs associated with fragile-X-mental-retardation protein. Methods Mol Biol 342, 267–276.PubMedGoogle Scholar
  34. 34.
    Easow, G., Teleman, A. A., Cohen, S. M. (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, L., Ding, L., Cheung, T. H., Dong, M. Q., Chen, J., Sewell, A. K., Liu, X., Yates, J. R., 3rd, and Han, M. (2007) Systematic identification of C. elegans miRISC proteins, miRNAs and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28, 598–613.CrossRefPubMedGoogle Scholar
  36. 36.
    Karginov, F. V., Conaco, C., Xuan, Z., Schmidt, B. H., Parker, J. S., Mandel, G., Hannon, G. J. (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 104, 19291–19296.CrossRefPubMedGoogle Scholar
  37. 37.
    Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C. S., Han, M., Ding, Y., Ambros, V. (2008) mirWIP: microRNA target prediction based on microRNA-containing-ribonucleoprotein-enriched transcripts. Nat Methods 5, 813–819.CrossRefPubMedGoogle Scholar
  38. 38.
    Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P. Y., Soll, S. J., Dinic, L., Ojo, T., Hafner, M., Zavolon, M., Tuschl, T. (2008) Molecular characterization of human argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596.CrossRefPubMedGoogle Scholar
  39. 39.
    Sanford, J. R., Coutinho, P., Hackett, J. A., Wang, X., Ranahan, W, Caceres, J. F. (2008) Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLoS One 3, e3369.CrossRefPubMedGoogle Scholar
  40. 40.
    Cho, Y. S., Iguchi, N., Yang, J., Handel, M. A., Hecht, N. B. (2005) Meiotic messenger RNAs and non-coding RNA targets of the protein Translin (TSN) in mouse testis. Biol Reprod 73, 840–847.CrossRefPubMedGoogle Scholar
  41. 41.
    Ule, J., Jensen, K. B., Ruggiu, M., Mele, A., Ule, A., Darnell, R. B. (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215.CrossRefPubMedGoogle Scholar
  42. 42.
    Noe, G., De Gaudenzi, J. G., Frasch, A. C. (2008) Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol 9, 107.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang, A., Wassarman, K. M., Rosenow, C., Tjagden, B. C., Storz, G., Gottesman, S. (2003) Global analysis of small RNAs and mRNA targets of Hfq. Mol Microbiol 50, 1111–1124.CrossRefPubMedGoogle Scholar
  44. 44.
    Sittka, A., Lucchini, S., Papenfort, K., Sharma, C. M., Rolle, K., Binnewies, T. T., Hinton, J. C., Vogel, J. (2008) Deep sequencing analysis of small non-coding RNA and mRNA targets of the global post-transcriptional regulator Hfq. PLoS Genet 4, e1000163.CrossRefPubMedGoogle Scholar
  45. 45.
    He, Y., Rothnagel, J. A., Epis, M. R., Leedman, P. J., Smith, R. (2009) Downstream targets of heterogeneous nuclear ribonucleoprotein A2 mediate cell proliferation. Mol Carcinog 48, 167–179.CrossRefPubMedGoogle Scholar
  46. 46.
    Kim Guisbert, K., Duncan, K., Li, H., Guthrie, C. (2005) Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 11, 383–393.CrossRefPubMedGoogle Scholar
  47. 47.
    Mazan-Mamczarz, K., Kuwano, Y., Zhan, M., White, E. J., Martindale, J. L., Lal, A., Gorospe, M. (2008) Identification of a signature motif in target mRNAs of RNA binding protein AUF1. Nucleic Acids Res 25 Nov 2008, Epub ahead of print. 2009 Jan; 37(1):204–14.PubMedGoogle Scholar
  48. 48.
    Banihashemi, L., Wilson, G. M., Das, N., Brewer, G. (2006) Upf1/Upf2 regulation of 3 untranslated region splice variants of AUF1 links nonsense-mediated and A+U rich element-mediated decay. Mol Cell Biol 26, 8743–8754.CrossRefPubMedGoogle Scholar
  49. 49.
    Graindorge, A., Le Tonqueze, O., Thuret, R., Pollet, N., Osborne, H. B., Audic, Y. (2008) Identification of CUG-BP1/EDEN-BP target mRNAs in Xenopus tropicalis. Nucleic Acids Res 36, 1861–1870.CrossRefPubMedGoogle Scholar
  50. 50.
    Kim, H. S., Kuwano, Y., Zhan, M., Pullman, R., Jr., Mazan-mamczarz, K., Li, H., Kedersha, N., Anderson, P., Wilce, M. C., Gorospe, M., Wice, J. A. (2007) Elucidation of a C-rich signature motif in target mRNAs of RNA-binding protein TIAR. Mol Cell Biol 27, 6806–6817.CrossRefPubMedGoogle Scholar
  51. 51.
    Tremblay, G. A., Richard, S. (2006) mRNAs associated with the Sam68 RNA binding protein. RNA Biol 3, 90–93.PubMedGoogle Scholar
  52. 52.
    Johnson, E. M., Kinoshita, Y., Weinrub, D. B., Wortman, M. J., Simon, R., Khalili, K., Winckler, B., Gordon, J. (2006) Role of pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83, 929–943.CrossRefPubMedGoogle Scholar
  53. 53.
    Liao, B., Hu, Y., Herrick, D. J., Brewer, G. (2005) The RNA – binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem 280, 18517–18524.CrossRefPubMedGoogle Scholar
  54. 54.
    Lee, M. H., Schedl, T. (2001) Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev 15, 2408–2420.CrossRefPubMedGoogle Scholar
  55. 55.
    Yang, J., Chennathukuzhi, V., Miki, K., O’Brien, D. A., Hecht, N. B. (2003) Mouse testis brain RNA-binding protein/translin selectively binds to the messenger RNA of the fibrous sheath protein glycerldehyde-3-phosphate-dehydrogenase-S and suppresses its translation in vitro. Biol Reprod 68, 853–859.CrossRefPubMedGoogle Scholar
  56. 56.
    Squires, J. E., Stoytchev, I., Forry, E. P., Berry, M. J. (2007) SBP2 binding affinity is a mjor determinant in differential selenoprotein mRNA translation and sensitivity to non-sense mediated decay. Mol Cell Biol 27, 7848–7855.CrossRefPubMedGoogle Scholar
  57. 57.
    Huang, Y. S., Richter, J. D. (2007) Analysis of mRNA translation in cultured hippocampal neurons. Methods Enzymol 431, 143–162.CrossRefPubMedGoogle Scholar
  58. 58.
    Niranjanakumari, S., Lasda, E., Brazas, R., Garcia-Blanco, M. A. (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26, 182–190.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ritu Jain
    • 1
  • Tiffany Devine
    • 1
  • Ajish D. George
    • 1
  • Sridar V. Chittur
    • 1
  • Timothy E. Baroni
    • 1
  • Luiz O. Penalva
    • 2
  • Scott A. Tenenbaum
    • 3
  1. 1.Department of Biomedical SciencesSchool of Public Health, Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany-SUNYRensselaerUSA
  2. 2.Department of Cellular and Structural BiologyChildren’s Cancer Research InstituteSan AntonioUSA
  3. 3.College of Nanoscale Science and Engineering, Nanoscale Constellation, University at Albany-SUNYRensselaerUSA

Personalised recommendations