Differentiation of Adipose Stem Cells

  • Bruce A. Bunnell
  • Bradley T. Estes
  • Farshid Guilak
  • Jeffrey M. Gimble
Part of the Methods in Molecular Biology™ book series (MIMB, volume 456)


The broad definition of a stem cell is a cell that has the ability to self-renew and differentiate into one or more specialized terminally differentiated cell types. It has become evident that stem cells persist in, and can be isolated from, many adult tissues. Adipose tissue has been shown to contain a population of cells that retain a high proliferation capacity in vitro and the ability to undergo extensive differentiation into multiple cell lineages. These cells are referred to as adipose stem cells and are biologically similar, although not identical, to mesenchymal stem cells derived from the bone marrow. Differentiation causes stem cells to adopt the pheno-typic, biochemical, and functional properties of more terminally differentiated cells. This chapter will provide investigators with some background on stem cells derived from adipose tissue and then provide details on adipose stem cell multilineage differentiation along osteogenic, adipogenic, chondrogenic, and neurogenic lineages.

Key words

Adipose stem cells differentiation osteogenesis adipogenesis chon-drogenesis neurogenesis 


  1. 1.
    Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211CrossRefPubMedGoogle Scholar
  2. 2.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchy-mal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  3. 3.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228CrossRefPubMedGoogle Scholar
  4. 4.
    Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237CrossRefPubMedGoogle Scholar
  5. 5.
    Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 96:14482–14486CrossRefPubMedGoogle Scholar
  6. 6.
    Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macro-glia in the brains of adult mice. Proc Natl Acad Sci U S A 94:4080–4085CrossRefPubMedGoogle Scholar
  7. 7.
    Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779CrossRefPubMedGoogle Scholar
  8. 8.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370CrossRefPubMedGoogle Scholar
  9. 9.
    Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170CrossRefPubMedGoogle Scholar
  10. 10.
    Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefPubMedGoogle Scholar
  11. 11.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530CrossRefPubMedGoogle Scholar
  12. 12.
    Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  13. 13.
    Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537CrossRefPubMedGoogle Scholar
  14. 14.
    Vescovi AL, Galli R, Gritti A (2001) The neural stem cells and their transdifferentiation capacity. Biomed Pharmacother 55:201–205CrossRefPubMedGoogle Scholar
  15. 15.
    Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663CrossRefPubMedGoogle Scholar
  16. 16.
    Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M, Mora M, De Angelis MG, Fiocco R, Cossu G, Vescovi AL (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991CrossRefPubMedGoogle Scholar
  17. 17.
    Tsai RY, Kittappa R, McKay RD (2002) Plasticity, niches, and the use of stem cells. Dev Cell 2:707–712CrossRefPubMedGoogle Scholar
  18. 18.
    Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A 99:8078–8083CrossRefPubMedGoogle Scholar
  19. 19.
    Rodriguez JP, Gonzalez M, Rios S, Cambiazo V (2004) Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem 93:721–731CrossRefPubMedGoogle Scholar
  20. 20.
    Heng BC, Cao T, Stanton LW, Robson P, Olsen B (2004) Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 19:1379–1394CrossRefPubMedGoogle Scholar
  21. 21.
    Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7:729–741CrossRefPubMedGoogle Scholar
  22. 22.
    Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:1663–1670CrossRefPubMedGoogle Scholar
  23. 23.
    Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA (2005) Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev 14:440–451CrossRefPubMedGoogle Scholar
  24. 24.
    Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, Gimble JM (2001) Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem 81:312–319CrossRefPubMedGoogle Scholar
  25. 25.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295CrossRefPubMedGoogle Scholar
  26. 26.
    Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology 16:145–171CrossRefPubMedGoogle Scholar
  27. 27.
    Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54:1222–1232CrossRefPubMedGoogle Scholar
  28. 28.
    Estes BT, Wu AW, Storms RW, Guilak F (2006) Extended passaging, but not aldehyde dehy-drogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol 209:987–995CrossRefPubMedGoogle Scholar
  29. 29.
    Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F (2002) Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290:763–769CrossRefPubMedGoogle Scholar
  30. 30.
    Awad HA, Halvorsen YD, Gimble JM, Guilak F (2003) Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 9:1301–1312CrossRefPubMedGoogle Scholar
  31. 31.
    Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F (2003) Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop:196–212Google Scholar
  32. 32.
    Abe T, Miyatake T, Norton WT, Suzuki K (1979) Activities of glycolipid hydrolases in neurons and astroglia from rat and calf brains and in oligodendroglia from calf brain. Brain Res 161:179–182CrossRefPubMedGoogle Scholar
  33. 33.
    Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222CrossRefPubMedGoogle Scholar
  34. 34.
    Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366CrossRefPubMedGoogle Scholar
  35. 35.
    Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A, Bunnell BA (2004) Neurogenesis of Rhesus adipose stromal cells. J Cell Sci:jcs.01264Google Scholar
  36. 36.
    Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379CrossRefPubMedGoogle Scholar
  37. 37.
    Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P, Hedrick MH (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111:1922–1931CrossRefPubMedGoogle Scholar
  38. 38.
    Safford KM, Safford SD, Gimble JM, Shetty AK, Rice HE (2004) Characterization of neuro-nal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol 187:319–328CrossRefPubMedGoogle Scholar
  39. 39.
    Erickson GR, Franklin D, Gimble JM, Guilak F (2001) Adipose tissue-derived stromal cells display a chondrogenic phenotype in culture. In 47th Annual Meeting of the Orthopaedic Research Society San Francisco, CAGoogle Scholar
  40. 40.
    Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F (2003) Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res:196–212Google Scholar
  41. 41.
    Martinez J, Silva S, Santibanez JF (1996) Prostate-derived soluble factors block osteoblast differentiation in culture. J Cell Biochem 61:18–25CrossRefPubMedGoogle Scholar
  42. 42.
    Wise LS, Green H (1979) Participation of one isozyme of cytosolic glycerophosphate dehy-drogenase in the adipose conversion of 3T3 cells. J Biol Chem 254:273–275PubMedGoogle Scholar
  43. 43.
    Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F (2005) Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 204:184–191CrossRefPubMedGoogle Scholar
  44. 44.
    Cullingford TE, Bhakoo K, Peuchen S, Dolphin CT, Patel R, Clark JB (1998) Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system. J Neurochem 70:1366–1375CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bruce A. Bunnell
    • 1
  • Bradley T. Estes
    • 2
  • Farshid Guilak
    • 2
  • Jeffrey M. Gimble
    • 3
  1. 1.Department of Pharmacology, Center for Gene Therapy, Division of Gene TherapyTulane National Primate Research CenterCovingtonLouisiana
  2. 2.Divison of Orthopaedic Surgery, Department of SurgeryDuke University Medical CenterDurhamNorth Carolina
  3. 3.Stem Cell Biology Laboratory, Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeLouisiana

Personalised recommendations