Metabolomics pp 159-174

Part of the Methods in Molecular Biology™ book series (MIMB, volume 358)

High-Performance Liquid Chromatography Separations Coupled With Coulometric Electrode Array Detectors

A Unique Approach to Metabolomics
  • Bruce S. Kristal
  • Yevgeniya I. Shurubor
  • Rima Kaddurah-Daouk
  • Wayne R. Matson

Abstract

Metabolomics is the systematic and theoretically comprehensive study of the small molecules that comprise a biological sample, e.g., sera or plasma. The primary analytical tools used in metabolomics are nuclear magnetic resonance and mass spectroscopy. We here address a different tool, high-performance liquid chromatography (HPLC) separations coupled with coulometric electrode array detection. This system has unique advantages, notably sensitivity and high quantitative precision, but also has unique limitations, such as obtaining little structural information on the metabolites of interest and limited scale-up capacity. The system also only detects redox-active compounds, which can be either a benefit or a detriment, depending on the experimental goals and design. Here, we discuss the characteristics of this HPLC/coulometric electrode array system in the context of metabolomics, and then present the method as practiced in our groups.

References

  1. 1.
    Harrigan, G. G. and Goodacre, R. (2003) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis, Kluwer, Boston/Dordrecht/London.Google Scholar
  2. 2.
    Vaidyanathan, S., Harrigan, G. G., and Goodacre, R. (2005) Metabolome Analysis: Strategies for Systems Biology, Springer, New York, NY.CrossRefGoogle Scholar
  3. 3.
    Reo, N. V. (2002) NMR-based metabolomics. Drug Chem. Toxicol. 25, 375–382.PubMedCrossRefGoogle Scholar
  4. 4.
    Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S. R., and Nash, A. F. (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J. Pharm. Biomed. Anal. 33, 1103–1115.PubMedCrossRefGoogle Scholar
  5. 5.
    Brindle, J. T., Nicholson, J. K., Schofield, P. M., Grainger, D. J., and Holmes, E. (2003) Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128, 32–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Lindon, J. C., Nicholson, J. K., and Wilson, I. D. (2000) Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J. Chromatogr. B. Biomed. Sci. Appl. 748, 233–258.PubMedCrossRefGoogle Scholar
  7. 7.
    Plumb, R. S., Stumpf, C. L., Gorenstein, M. V., et al. (2002) Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun. Mass Spectrom. 16, 1991–1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Plumb, R. S., Stumpf, C. L., Granger, J. H., Castro-Perez, J., Haselden, J. N., and Dear, G. J. (2003) Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun. Mass Spectrom. 17, 2632–2638.PubMedCrossRefGoogle Scholar
  9. 9.
    Beaudry, F., Yves Le Blanc, J. C., Coutu, M., Ramier, I., Moreau, J. P., and Brown, N. K. (1999) Metabolite profiling study of propranolol in rat using LC/MS/MS analysis. Biomed. Chromatogr. 13, 363–369.Google Scholar
  10. 10.
    Henion, J., Skrabalak, D., Dewey, E., and Maylin, G. (1983) Micro LC/MS in drug analysis and metabolism studies. Drug Metab. Rev. 14, 961–1003.PubMedCrossRefGoogle Scholar
  11. 11.
    Kimura, M., Yamamoto, T., and Yamaguchi, S. (1999) Automated metabolic profiling and interpretation of GC/MS data for organic acidemia screening: a personal computer-based system. Tohoku J. Exp. Med. 188, 317–334.PubMedCrossRefGoogle Scholar
  12. 12.
    Yamada, S. (1979) Metabolic profiling of rat brain homogenate and its developmental study using gas chromatography-mass spectrometry (GC/MS). Kurume Med. J. 26, 319–320.PubMedGoogle Scholar
  13. 13.
    Vigneau-Callahan, K. E., Shestopalov, A. I., Milbury, P. E., Matson, W. R., and Kristal, B. S. (2001) Characterization of diet-dependent metabolic serotypes: analytical and biological variability issues in rats. J. Nutr. 131, 924S–932S.PubMedGoogle Scholar
  14. 14.
    Shi, H., Vigneau-Callahan, K. E., Shestopalov, A. I., Milbury, P. E., Matson, W. R., and Kristal, B. S. (2002) Characterization of diet-dependent metabolic serotypes: proof of principle in female and male rats. J. Nutr. 132, 1031–1038.PubMedGoogle Scholar
  15. 15.
    Shi, H., Vigneau-Callahan, K. E., Shestopalov, A. I., Milbury, P. E., Matson, W. R., and Kristal, B. S. (2002) Characterization of diet-dependent metabolic serotypes: primary validation of male and female serotypes in independent cohorts of rats. J. Nutr. 132, 1039–1046.PubMedGoogle Scholar
  16. 16.
    Paolucci, U., Vigneau-Callahan, K. E., Shi, H., Matson, W. R., and Kristal, B. S. (2004) Development of biomarkers based on diet-dependent metabolic serotypes: characteristics of component-based models of metabolic serotypes. OMICS 8, 221–238.PubMedCrossRefGoogle Scholar
  17. 17.
    Paolucci, U., Vigneau-Callahan, K. E., Shi, H., Matson, W. R., and Kristal, B. S. (2004) Development of biomarkers based on diet-dependent metabolic serotypes: concerns and approaches for cohort and gender issues in serum metabolome studies. OMICS 8, 209–220.PubMedCrossRefGoogle Scholar
  18. 18.
    Shi, H., Paolucci, U., Vigneau-Callahan, K. E., Milbury, P. E., Matson, W. R., and Kristal, B. S. (2004) Development of biomarkers based on diet-dependent metabolic serotypes: practical issues in development of expert system-based classification models in metabolomic studies. OMICS 8, 197–208.PubMedCrossRefGoogle Scholar
  19. 19.
    Shurubor, Y., Matson, W. R., Martin, R. J., and Kristal, B. S. (2005) Relative contribution of specific sources of systematic errors and analytical imprecision to metabolite analysis by HPLC-ECD. Metabolomics 1, 159–168.CrossRefGoogle Scholar
  20. 20.
    Shurubor, Y. I., Paolucci, U., Krasnikov, B. F., Matson, W. R., and Kristal, B. S. (2005) Analytical precision, biological variation, and mathematical normalization in high data density Metabolomics. Metabolomics 1, 75–85.CrossRefGoogle Scholar
  21. 21.
    Shi, H., Vigneau-Callahan, K. E., Matson, W. R., and Kristal, B. S. (2002) Attention to relative response across sequential electrodes improves quantitation of coulometric array. Anal. Biochem. 302, 239–245.PubMedCrossRefGoogle Scholar
  22. 22.
    Kristal, B. S., Shurubor, Y., Paolucci, U., and Matson, W. R. (2005) Methodological issues and experimental design considerations to facilitate development of robust, metabolic profile-based classification. In: Metabolic Profiling: Its Role in Drug Discovery and Integration with Genomics and Proteomics, (Harrigan, G., Goodacre, R., and Vaidyanathan, S., eds.), Springer, New York, NY.Google Scholar
  23. 23.
    Matson, W. R., Langials, P., Volicer, L., Gamache, P. H., Bird, E. D., and Mark, K. A. (1984) N-electrode three dimensional liquid chromatography with electrochemical detection for determination of neurotransmitters. Clinical Chem. 30, 1477–1488.Google Scholar
  24. 24.
    Beal, M. F., Matson, W. R., Swartz, K. J., Gamache, P. H., and Bird, E. D. (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J. Neurochem. 55, 1327–1339.PubMedCrossRefGoogle Scholar
  25. 25.
    Matson, W. R., Gamache, P. H., Beal, M. F., and Bird, E. D. (1987) EC array sensor concepts and data. Life Sci. 41, 905–908.PubMedCrossRefGoogle Scholar
  26. 26.
    Matson, W. R., Bouckoms, A., Svendson, C., Beal, M. F., and Bird, E. D. (1990) Generating and controlling multiparameter databases for biochemical correlates of disorders. In: Basic, Clinical and Therapeutic Aspects of Alzheimer’s and Parkinson’s Diseases, (Nagatsu, T., Fisher, A., and Yoshida, M., eds.), Plenum, New York, pp. 513–516.Google Scholar
  27. 27.
    Ogawa, T., Matson, W. R., Beal, M. F., et al. (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42, 1702–1706.PubMedGoogle Scholar
  28. 28.
    Beal, M. F., Matson, W. R., Storey, E., et al. (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J. Neurol. Sci. 108, 80–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Volicer, L., Langlais, P. J., Matson, W. R., Mark, K. A., and Gamache, P. H. (1985) Serotoninergic system in dementia of the Alzheimer type. Abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal fluid. Arch. Neurol. 42, 1158–1161.PubMedGoogle Scholar
  30. 30.
    Kristal, B. S., Vigneau-Callahan, K. E., and Matson, W. R. (1999) Purine catabolism: links to mitochondrial respiration and antioxidant defenses? Arch. Biochem. Biophys. 370, 22–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Bogdanov, M., Brown, R. H., Matson, W., et al. (2000) Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med. 29, 652–658.PubMedCrossRefGoogle Scholar
  32. 32.
    Bogdanov, M. B., Beal, M. F., McCabe, D. R., Griffin, R. M., and Matson, W. R. (1999) A carbon column-based liquid chromatography electrochemical approach to routine 8-hydroxy-2′-deoxyguanosine measurements in urine and other biologic matrices: a one-year evaluation of methods. Free Radic. Biol. Med. 27, 647–666.PubMedCrossRefGoogle Scholar
  33. 33.
    Rozen, S, Cudkowicz, M. E., Bogdanov, M., et al. (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1, 101–108.PubMedCrossRefGoogle Scholar
  34. 34.
    Kristal, B. S., Vigneau-Callahan, K. E., and Matson, W. R. (2002) Simultaneous analysis of multiple redox-active metabolites from biological matrices. In: Oxidative Stress Biomarkers and Antioxidant Protocols, (Armstrong, D., ed.), Humana Press, Totowa, NJ, pp. 185–194.CrossRefGoogle Scholar
  35. 35.
    Milbury, P. E., Vaughan, M. R., Farley, S., Matula, G. J., Jr., Convertino, V. A., and Matson, W. R. (1998) A comparative bear model for immobility-induced osteopenia. Ursus. 10, 507–520.PubMedGoogle Scholar
  36. 36.
    Milbury, P. E. (1997) CEAS generation of large multiparameter databases for determining categorical process involvement of biomolecules. In: Coulometric Array Detectors for HPLC, (Acworth, I. N., Naoi, M., Parvez, S., and Parvez, H., eds.), VSP Publications, Utrecht, The Netherlands, pp. 125–141.Google Scholar
  37. 37.
    Acworth, I. N., Naoi, M., Parvez, H., and Parvez, S. (1997) Coulometric Electrode Array Detectors for the HPLC, VSP International Science Publication, Utrecht, The Netherlands.Google Scholar
  38. 38.
    Svendsen, C. N. (1993) Multi-electrode detectors in high performance liquid chromatography: a new dimension in electrochemical analysis. Analyst 118, 123–129.CrossRefGoogle Scholar
  39. 39.
    Acworth, I. N. and Gamache, P. H. (1996) The coulometric electrode array for use in HPLC analysis, part 1: theory. Amer. Lab. May. 5, 33–37.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Bruce S. Kristal
    • 1
    • 2
  • Yevgeniya I. Shurubor
    • 1
  • Rima Kaddurah-Daouk
    • 3
  • Wayne R. Matson
    • 4
  1. 1.Dementia Research ServiceBurke Medical Research InstituteWhite Plains
  2. 2.Department of NeuroscienceWeill Medical College of Cornell UniversityNew York
  3. 3.Department of PsychiatryDuke University Medical CenterDurham
  4. 4.Department of Systems BiochemistryBedford Veterans Administration Medical CenterBedford

Personalised recommendations