Alcohol pp 63-74 | Cite as

Analysis of Ethanol Developmental Toxicity in Zebrafish

Part of the Methods in Molecular Biology™ book series (MIMB, volume 447)


It is largely accepted that vertebrates are more susceptible to chemical insult during the early life stage. It is implied that if a chemical such as ethanol is developmentally toxic, it must interfere with, or modulate, critical signaling pathways. The probable molecular explanation for increased embryonic susceptibility is that collectively there is no other period of an animal's lifespan when the full repertoire of molecular signaling is active. Understanding the mechanism by which ethanol exposure disrupts vertebrate embryonic development is enormously challenging; it requires a thorough understanding of the normal molecular program to understand how transient ethanol exposure disrupts signaling and results in detrimental long-lasting effects. During the past several years, investigators have recognized the advantages of the zebrafish model to discover the signaling events that choreograph embryonic development. External development coupled with the numerous molecular and genetic methods make this model a valuable tool to unravel the mechanisms by which ethanol disrupts embryonic development. In this chapter we describe procedures used to evaluate and define the morphological, cellular and molecular responses to ethanol in zebrafish.


Zebrafish development embryo apoptosis gene expression. 


  1. 1.
    1. Becker, H. C., Diaz-Granados, J. L., and Randall, C. L. (1996) Teratogenic actions of ethanol in the mouse: a minireview. Pharmacol. Biochem. Behav. 55, 501–513.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Brien, J. F., Clarke, D. W., Richardson, B., and Patrick, J. (1985) Disposition of ethanol in maternal blood, fetal blood, and amniotic fluid of third-trimester pregnant ewes. Am. J. Obstet. Gynecol. 152, 583–590.PubMedGoogle Scholar
  3. 3.
    3. Richardson, B. S., Patrick, J. E., Bousquet, J., Homan, J., and Brien, J. F. (1985) Cerebral metabolism in fetal lamb after maternal infusion of ethanol. Am. J. Physiol. 249, R505–R509.PubMedGoogle Scholar
  4. 4.
    4. Bupp Becker, S. R., and Shibley, I. A., Jr. (1998) Teratogenicicty of ethanol in different chicken strains. Alcohol 33, 457–464.Google Scholar
  5. 5.
    5. Su, B., Debelak, K. A., Tessmer, L. L., Cartwright, M. M., and Smith, S. M. (2001) Genetic influences on craniofacial outcome in an avian model of prenatal alcohol exposure. Alcohol Clin. Exp. Res. 25, 60–69.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Ranganathan, S., Davis, D. G., and Hood, R. D. (1987) Developmental toxicity of ethanol in Drosophila melanogaster. Teratology 36, 45–49.PubMedCrossRefGoogle Scholar
  7. 7.
    7. Ranganathan, S., Davis, D. G., Leeper, J. D., and Hood, R. D. (1987) Effects of differential alcohol dehydrogenase activity on the developmental toxicity of ethanol in Drosophila melanogaster. Teratology 36, 329–334.PubMedCrossRefGoogle Scholar
  8. 8.
    8. Dhawan, R., Dusenbery, D. B., and Williams, P. L. (1999) Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health A 58, 451–462.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Thompson, G. and de Pomerai, D. I. (2005) Toxicity of short-chain alcohols to the nematode Caenorhabditis elegans: A comparison of endpoints. J. Biochem. Mol. Toxicol. 19, 87–95.PubMedCrossRefGoogle Scholar
  10. 10.
    10. Laale, H. W. (1971) Ethanol induced notochord and spinal cord duplications in the embryo of the zebrafish, Brachydanio rerio. J. Exp. Zool. 177, 51–64.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Reimers, M. J., Flockton, A. R., and Tanguay, R. L. (2004) Ethanol and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol. Teratol. 26, 769–781.PubMedCrossRefGoogle Scholar
  12. 12.
    12. Ackermann, G. E., and Paw, B. H. (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front. Biosci. 8, d1227–d1253.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Rubinstein, A. L. (2003) Zebrafish: from disease modeling to drug discovery. Curr. Opin. Drug Discov. Devel. 6, 218–23.PubMedGoogle Scholar
  14. 14.
    14. Rodriguez, F., Lopez, J. C., Vargas, J. P., Broglio, C., Gomez, Y., and Salas, C. (2002) Spatial memory and hippocampal pallium through vertebrate evolution: Insights from reptiles and teleost fish. Brain Res. Bull. 57, 499–503.PubMedCrossRefGoogle Scholar
  15. 15.
    15. Amsterdam, A., S. Lin, L.G. Moss, and N. Hopkins (1996) Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173, 99–103.PubMedCrossRefGoogle Scholar
  16. 16.
    16. Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y., and Eguchi, G. (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev. Biol. 192, 289–299.PubMedCrossRefGoogle Scholar
  17. 17.
    17. Wixon, J. (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17, 225–31.PubMedCrossRefGoogle Scholar
  18. 18.
    18. Dodd, A., Curtis, P. M., Williams, L. C., and Love, D. R. (2000) Zebrafish: Bridging the gap between development and disease. Hum. Mol. Genet. 9, 2443–2449.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J., Jiang, Y. P., Heisenberg, C. P., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.Google Scholar
  20. 20.
    20. Mullins, M. C., Hammerschmidt, M., Haffter, P., and Nusslein-Volhard, C. (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202.PubMedCrossRefGoogle Scholar
  21. 21.
    21. Amsterdam, A. and Hopkins, N. (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473–478.PubMedCrossRefGoogle Scholar
  22. 22.
    22. Peterson, R. T., Link, B. A., Dowling, J. E., and Schreiber, S. L. (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97,12965–12969.CrossRefGoogle Scholar
  23. 23.
    23. Peterson, R. T., Shaw, S. Y., Peterson, T. A., Milan, D. J. Zhong, T. P., Schreiber, S. L., MacRae, C. A., and Fishman, M. C. (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599.PubMedCrossRefGoogle Scholar
  24. 24.
    24. Shafizadeh, E., Peterson, R. T., and Lin, S. (2004) Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138, 245–249.PubMedCrossRefGoogle Scholar
  25. 25.
    25. Mathew, L. K., Andreasen, E. A., Sengupta, S., Peterson, R. T., and Tanguay, R. L. (nd) Chemical genetics to probe regenerative biology. J. Biol. Chem. 282, 35202–35210.CrossRefGoogle Scholar
  26. 26.
    26. Nasevicius, A., and Ekker, S. C. (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr. Opin. Mol. Ther. 3, 224–228.PubMedGoogle Scholar
  27. 27.
    27. Nasevicius, A., and Ekker, S. C. (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220.PubMedCrossRefGoogle Scholar
  28. 28.
    28. Baumann, M., and Sander, K. (1984) Bipartite axiation follows incomplete epiboly in zebrafish embryos treated with chemical teratogens. J. Exp. Zool. 230, 363–376.PubMedCrossRefGoogle Scholar
  29. 29.
    29. Carvan, M. J., 3rd, Loucks, E., Weber, D. N., and Williams, F. E. (2004) Ethanol effects on the developing zebrafish: Neurobehavior and skeletal morphogenesis. Neurotoxicol. Teratol. 26, 757–768.PubMedCrossRefGoogle Scholar
  30. 30.
    30. Laale, H. W. (1977) The biology and use of zebrafish, Brachydanio rerio, in fisheries research. A literature review. J. Fish Biol. 10, 121–173.CrossRefGoogle Scholar
  31. 31.
    31. Loucks, E. and Carvan, M. J., 3rd. (2004) Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol. Teratol. 26, 745–755.PubMedCrossRefGoogle Scholar
  32. 32.
    32. Reimers, M. J., La Du, J. K., Periera, C. B., Giovanini, J., and Tanguay, R. L. (2006) Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants. Neurotoxicol. Teratol. 28, 497–508.PubMedCrossRefGoogle Scholar
  33. 33.
    33. Reimers, M. J., Hahn, M. E., and Tanguay, R. L. (2004) Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. J. Biol. Chem. 279, 38303–38312.PubMedCrossRefGoogle Scholar
  34. 34.
    34. Lassen, N., Estey, T., Tanguay, R. L., Pappa, A., Reimers, M. J., and Vasiliou, V. (2005) Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2. Drug Metab. Dispos. 33, 649–656.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Jowett, T., and Lettice, L. (1994) Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet. 10, 73–74.PubMedCrossRefGoogle Scholar
  36. 36.
    36. Linney, E., and Udvadia, A. J. (2004) Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol. Biol. 254, 271–288.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Environmental and Molecular ToxicologyOregon State UniversityCorvallisOR

Personalised recommendations