Advertisement

Methods for Conversion of Prion Protein into Amyloid Fibrils

  • Leonid Breydo
  • Natallia Makarava
  • Ilia V. Baskakov
Part of the Methods in Molecular Biology™ book series (MIMB, volume 459)

Summary

Misfolding and aggregation of prion protein (PrP) is related to several neurodegenerative diseases in humans such as Creutzfeldt—Jacob disease, fatal familial insomnia, and Gerstmann—Straussler—Sheinker disease. Amyloid fibrils prepared from recombinant PrP in vitro share many features of the infectious prions. These fibrils can be used as a synthetic surrogate of PrPSc for development of prion diagnostics, including generation of PrPSc-specific antibody, for screening of antiprion drugs, or for development of antiprion decontamination procedures. Here, we describe the methods of preparation of prion protein fibrils in vitro and biochemical assays for assessing physical properties and the quality of fibrils.

Keywords

Amyloid fibrils conformational transition prion diseases recombinant prion protein 

References

  1. 1.
    Baskakov I V, Legname G, Baldwin MA, Prusiner SB, Cohen FE. (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem; 277:21140–21148.CrossRefPubMedGoogle Scholar
  2. 2.
    Jackson GS, Hosszu LLP, Power A, Hill AF, Kenney J, Saibil H, et al. (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science; 283:1935–1937.CrossRefPubMedGoogle Scholar
  3. 3.
    3.Lee S, Eisenberg D. (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat Struct Biol; 10(9):725–730.CrossRefPubMedGoogle Scholar
  4. 4.
    4.Kazlauskaite J, Young A, Gardner CE, Macpherson JV, Venien-Bryan C, Pinheiro TJT. (2005) An unusual soluble b-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells. Biochem Biophys Res Commun; 328:292–305.CrossRefPubMedGoogle Scholar
  5. 5.
    5.Torrent J, Alvarez-Martinez MT, Harricane MC, Heitz F, Liautard JP, Balny C et al. (2004) High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. Biochemistry; 43:7162–7170.CrossRefPubMedGoogle Scholar
  6. 6.
    6.Leffer K-W, Wille H, Stohr J, Junger E, Prusiner SB, Riesner D. (2005) Assembly of natural and recombinant prion protein into fibrils. Biol Chem; 386:569–580.CrossRefGoogle Scholar
  7. 7.
    7.Bocharova OV, Breydo L, Parfenov AS, Salnikov V V, Baskakov I V. (2005) In vitro conversion of full length mammalian prion protein produces amyloid form with physical property of PrPSc. J Mol Biol; 346:645–659.CrossRefPubMedGoogle Scholar
  8. 8.
    8.Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV. (2006) Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy. J Mol Biol; 358:580–596.CrossRefPubMedGoogle Scholar
  9. 9.
    9.Makarava N, Bocharova OV, Salnikov VV, Breydo L, Anderson M, Baskakov IV. (2006) Dichotomous versus palm-type mechanisms of lateral assembly of amyloid fibrils. Protein Sci; 15:1334–1341.CrossRefPubMedGoogle Scholar
  10. 10.
    10.Novitskaya V, Makarava N, Bellon A, Bocharova OV, Bronstein IB, Williamson RA, et al. (2006) Probing the conformation of the prion protein within a single amyloid fibril using a novel immunoconformational assay. J Biol Chem; 281:15536–15545.CrossRefPubMedGoogle Scholar
  11. 11.
    11.Bocharova OV, Breydo L, Salnikov VV, Baskakov IV. (2005) Cu(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry; 44:6776–6787.CrossRefPubMedGoogle Scholar
  12. 12.
    12.Breydo L, Bocharova OV, Makarava N, Salnikov VV, Anderson M, Baskakov IV.(2005) Methionine oxidation interferes with conversion of the prion protein into the fibrillar protein-ase K-resistant conformation. Biochemistry; 44:15534–15543.CrossRefPubMedGoogle Scholar
  13. 13.
    13.McMahon HEM, Mange A, Nishida N, Creminon C, Casanova D, Lehman S. (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem; 276:2286–2291.CrossRefPubMedGoogle Scholar
  14. 14.
    14.Mange A, Beranger F, Peoc'h K, Onodera T, Frobert Y, Lehmann S. (2004) alpha- and beta-Cleavages of the amino-terminus of the cellular prion protein. Biol Cell; 96:125–132.CrossRefPubMedGoogle Scholar
  15. 15.
    15.Bocharova OV, Breydo L, Salnikov V V, Gill AC, Baskakov IV. (2005) Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob Disease PrPSc. Protein Sci; 14:1222–1232.CrossRefPubMedGoogle Scholar
  16. 16.
    16.Bocharova OV, Makarava N, Breydo L, Anderson M, Salnikov VV, Baskakov IV. (2006) Annealing PrP amyloid fibrils at high temperature results in extension of a proteinase K resistant core. J Biol Chem; 281:2373–2379.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Leonid Breydo
    • 1
  • Natallia Makarava
    • 1
  • Ilia V. Baskakov
    • 1
  1. 1.Medical Biotechnology CenterUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations