Mycobacterial Recombineering

  • Julia C. van Kessel
  • Graham F. Hatfull
Part of the Methods in Molecular Biology book series (MIMB, volume 435)

Abstract

Although substantial advances have been made in mycobacterial genetics over the past 15 yr, manipulation of mycobacterial genomes and Mycobacterium tuberculosis in particular, continues to be hindered by problems of relatively poor DNA uptake, slow growth rate, and high levels of illegitimate recombination. In Escherichia coli an effective approach to stimulating recombination frequencies has been developed called “recombineering,” in which phage-encoded recombination functions are transiently expressed to promote efficient homologous recombination. Although homologs of these recombination proteins are rare among mycobacteriophages, we have identified one phage, Che9c, encoding relatives of both RecE and RecT of the E. coli rac prophage. Expression of the Che9c proteins from an inducible expression system in either slow- or fast-growing mycobacteria provides elevated recombination frequencies and facilitates simple allelic exchange using linear DNA substrates. Mycobacterial recombineering, therefore, offers a simple approach for constructing gene replacement mutants in M. smegmatis and M. tuberculosis.

Key Words

Allelic exchange genetic engineering mutagenesis mycobacteriophage Mycobacterium tuberculosis recombineering 

References

  1. 1.
    Hatfull, G. F. (1996) The molecular genetics of Mycobacterium tuberculosis. Curr. Top Microbiol. Immunol. 215, 29–47.PubMedGoogle Scholar
  2. 2.
    Kalpana, G. V., Bloom, B. R., and Jacobs, W. R., Jr. (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88, 5433–5437.CrossRefPubMedGoogle Scholar
  3. 3.
    Bardarov, S., Bardarov, S., Jr., Pavelka, M. S., Jr., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017.PubMedGoogle Scholar
  4. 4.
    Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R., Jr., Gicquel, B., and Guilhot, C. (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10,955–10,960.CrossRefPubMedGoogle Scholar
  5. 5.
    Court, D. L., Sawitzke, J. A., and Thomason, L. C. (2002) Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388.CrossRefPubMedGoogle Scholar
  6. 6.
    Datta, S., Costantino, N., and Court, D. L. (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115.CrossRefPubMedGoogle Scholar
  7. 7.
    Ranallo, R. T., Barnoy, S., Thakkar, S., Urick, T., and Venkatesan, M. M. (2006) Developing live Shigella vaccines using lambda Red recombineering. FEMS Immunol. Med. Microbiol. 47, 462–469.CrossRefPubMedGoogle Scholar
  8. 8.
    Sarov, M., Schneider, S., Pozniakovski, A., et al. (2006) A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844.CrossRefPubMedGoogle Scholar
  9. 9.
    Erler, A., Maresca, M., Fu, J., and Stewart, A. F. (2006) Recombineering reagents for improved inducible expression and selection marker re-use in Schizosaccharomyces pombe. Yeast 23, 813–823.CrossRefPubMedGoogle Scholar
  10. 10.
    van Kessel, J. C. and Hatfull, G. F. (2007) Recombineering in Mycobacterium tuberculosis. Nat. Methods 4, 147–152.CrossRefPubMedGoogle Scholar
  11. 11.
    Hatfull, G. F., Pedulla, M. L., Jacobs-Sera, D., et al. (2006) Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genetics 2, E92.CrossRefPubMedGoogle Scholar
  12. 12.
    Gottesman, M. M., Gottesman, M. E., Gottesman, S., and Gellert, M. (1974) Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J. Mol. Biol. 88, 471–487.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee, M. H., Pascopella, L., Jacobs, W. R., Jr., and Hatfull, G. F. (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88, 3111–3115.CrossRefPubMedGoogle Scholar
  14. 14.
    Wards, B. J. and Collins, D. M. (1996) Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol. Lett. 145, 101–105.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Julia C. van Kessel
    • 1
  • Graham F. Hatfull
    • 1
  1. 1.Pittsburgh Bacteriophage Institute and Department of Biological SciencesUniversity of PittsburghPittsburgh

Personalised recommendations