Chromosomal Mutagenesis pp 165-173

Part of the Methods in Molecular Biology book series (MIMB, volume 435)

Site-Specific Chromosomal Integration Mediated by ϕC31 Integrase

  • Annahita Keravala
  • Michele P. Calos


ϕC31 integrase is a site-specific recombinase from a bacteriophage that has become a useful tool in mammalian cells. The enzyme normally performs precise, unidirectional recombination between two attachment or att sites called attB and attP. We have shown that an attP site preintegrated into a mammalian chromosome can serve as a target for integration of an introduced plasmid carrying an attB site. Recombination leads to precise integration of the plasmid into the chromosome at the attP site. This reaction is useful for placing introduced genes into the same chromosomal environment, in order to minimize position effects associated with random integration. Because ϕC31 integrase can also mediate integration at endogenous sequences that resemble attP, called pseudo attP sites, a selection system is used that yields integration only at the desired preintegrated attP site. This chapter provides a protocol that features a simple antibiotic selection to isolate cell lines in which the introduced plasmid has integrated at the desired attP site. A polymerase chain reaction assay is also presented to verify correct chromosomal placement of the introduced plasmid. This integration system based on ϕC31 integrase supplies a simple method to obtain repeated integration at the same chromosomal site in mammalian cells.

Key Words

attB attP ϕC31 integrase phage integrase position effects site-specific integration 


  1. 1.
    Ivics, Z., Hackett, P. B., Plasterk, R. H., and Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish. Cell 91, 501–510.CrossRefPubMedGoogle Scholar
  2. 2.
    Yant, S. R., Wu, X., Huang, Y., Garrison, B., Burgess, S. M., and Kay, M. A. (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell. Biol. 25, 2085–2094.CrossRefPubMedGoogle Scholar
  3. 3.
    Bushman, F. D. (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115, 135–138.CrossRefPubMedGoogle Scholar
  4. 4.
    Sauer, B. and Henderson, N. (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5170.CrossRefPubMedGoogle Scholar
  5. 5.
    O’Gorman, S., Fox, D. T., and Wahl, G. M. (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355.CrossRefPubMedGoogle Scholar
  6. 6.
    Rausch, H. and Lehmann, M. (1991) Structural analysis of the actinophage ΦC31 attachment site. Nucleic Acids Res. 19, 5187–5189.CrossRefPubMedGoogle Scholar
  7. 7.
    Thorpe, H. M. and Smith, M. C. M. (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95, 5505–5510.CrossRefPubMedGoogle Scholar
  8. 8.
    Kuhstoss, S. and Rao, R. N. (1991) Analysis of the integration function of the Streptomycete bacteriophage ΦC31. J. Mol. Biol. 222, 897–908.CrossRefPubMedGoogle Scholar
  9. 9.
    Groth, A. C., Olivares, E. C., Thyagarajan, B., and Calos, M. P. (2000) A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97, 5995–6000.CrossRefPubMedGoogle Scholar
  10. 10.
    Thyagarajan, B., Olivares, E. C., Hollis, R. P., Ginsburg, D. S., and Calos, M. P. (2001) Site-specific genomic integration in mammalian cells mediated by phage ϕC31 integrase. Mol. Cell. Biol. 21, 3926–3934.CrossRefPubMedGoogle Scholar
  11. 11.
    Groth, A. C. and Calos, M. P. (2004) Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678.CrossRefPubMedGoogle Scholar
  12. 12.
    Belteki, G., Gertsenstin, M., Ow, D. W., and Nagy, A. (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing the ϕC31 integrase. Nat. Biotechnol. 21, 321–324.CrossRefPubMedGoogle Scholar
  13. 13.
    Calos, M. P. (2006) The ϕC31integrase system for gene therapy. Curr. Gene Ther. 6, 633–645.CrossRefPubMedGoogle Scholar
  14. 14.
    Allen, B. G. and Weeks, D. L. (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat. Methods 2, 975–979.CrossRefPubMedGoogle Scholar
  15. 15.
    Thyagarajan, B. and Calos, M. P. (2005) Site-specific integration for high-level protein production in mammalian cells, in Therapeutic Proteins: Methods and Protocols (Smales, C. M. and James, D. C. eds.), Humana Press, Totowa, NJ, pp. 99–106.Google Scholar
  16. 16.
    Hillman, R. T. and Calos, M. P. (2007) Site-specific integration with phage ϕC31 integrase, in Gene Transfer: Delivery and Expression of DNA and RNA (Friedman, T. and Rossi, J. eds.), Chapter 65, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 653–660.Google Scholar
  17. 17.
    Groth, A. C., Fish, M., Nusse, R., and Calos, M. P. (2004) Creation of transgenic Drosophila by using the site-specific integrase from phage ϕC31. Genetics 166, 1775–1782.CrossRefPubMedGoogle Scholar
  18. 18.
    Bateman, J. R., Lee, A. M., and Wu, C. T. (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–777.CrossRefPubMedGoogle Scholar
  19. 19.
    Venken, K. J. T., He, Y., Hoskins, R. A., and Bellen, H. J. (2006) P[acman]: A BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 341, 1747–1751.CrossRefGoogle Scholar
  20. 20.
    Chalberg, T. W., Portlock, J. L., Olivares, E. C., et al. (2006) Integration specificity of phage ϕC31 integrase in the human genome. J. Mol. Biol. 357, 28–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Keravala, A., Lee, S., Thyagarajan, B., et al. (2007) Mutational derivatives of ϕC31 integrase with enhanced efficiency and specificity (in press).Google Scholar
  22. 22.
    Olivares, E. C., Hollis, R. P., Chalberg, T. W., Meuse, L., Kay, M. A., and Calos, M. P. (2002) Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat. Biotechnol. 20, 1124–1128.CrossRefPubMedGoogle Scholar
  23. 23.
    Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Annahita Keravala
    • 1
  • Michele P. Calos
    • 1
  1. 1.Department of GeneticsStanford University School of MedicineStanford

Personalised recommendations