Advertisement

Axenic In Vitro Cultivation of Echinococcus multilocularis Metacestode Vesicles and the Generationof Primary Cell Cultures

  • Markus Spiliotis
  • Klaus Brehm
Part of the Methods in Molecular Biology book series (MIMB, volume 470)

Abstract

Parasitic helminths are a major cause of disease worldwide, yet the molecular mechanisms of host-helminth interaction and parasite development are only rudimentarily studied. A main reasons for this lack of knowledge are the tremendous experimental difficulties in cultivating parasitic helminths under defined laboratory conditions and obtaining sufficient amounts of parasite material for molecular analyses. For one member of this neglected group of pathogens, the fox-tapeworm Echinococcus multilocularis, we have established and optimized in vitro cultivation systems by which the major part of the parasite’s life cycle, leading from early metacestode vesicles to the production of protoscoleces, can be mimicked under laboratory conditions. The methodology comprises co-cultivation systems for host cells and parasite larvae by which large amounts of parasite vesicles can be generated. Furthermore, we have established an axenic (host cell–free) cultivation system that allows studies on the influence of defined host factors on parasite growth and development. On the basis of this system, the isolation and maintenance of primary Echinococcus cells that are devoid of overgrowing host cells is now possible. The availability of the primary cell culture system constitutes a first step toward the establishment of genetic manipulation methods for the parasite that will be of great interest for further research on infection strategies and development of Echinococcus and other cestodes.

Key words

Echinococcus cestode helminth parasite in vitro cultivation feeder cells primary cells development 

References

  1. 1.
    Brehm, K., Spiliotis, M., Zavala-Gongora, R., Konrad, C. and Frosch, M. (2006) The molecular mechanisms of larval cestode development: first steps into an unknown world. Parasitol. Int. 55, S15–S21.CrossRefPubMedGoogle Scholar
  2. 2.
    Siles-Lucas, M. and Hemphill, A. (2002) Cestode parasites: application of in vivo and in vitro models for studies on the host-parasite relationship. Adv. Parasitol. 51, 133–230.CrossRefPubMedGoogle Scholar
  3. 3.
    Hemphill, A. and Gottstein, B. (1996) Immunological and morphological studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestodes. Parasitol. Res. 81, 605–614.CrossRefGoogle Scholar
  4. 4.
    Jura, H., Bader, A., Hartmann, M., Maschek, H. and Frosch, M. (1996) Hepatic tissue culture model for study of host-parasite interactions in alveolar echinococcosis. Infect. Immun. 64, 3484–3490.PubMedGoogle Scholar
  5. 5.
    Brehm, K., Wolf, M., Beland, H., Kroner, A. and Frosch, M. (2003) Analysis of differential gene expression in Echinococcus multilocularis larval stages by means of spliced leader differential display. Int. J. Parasitol. 33, 1145–1159.CrossRefPubMedGoogle Scholar
  6. 6.
    Spiliotis, M., Tappe, D., Sesterhenn, L. and Brehm, K. (2004) Long term in vitro cultivation of Echinococcus multilocularis metacestodes under axenic conditions. Parasitol. Res. 92, 430–432.CrossRefPubMedGoogle Scholar
  7. 7.
    Spiliotis, M., Tappe, D., Brückner, S., Mösch, H.U. and Brehm, K. (2005) Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm Echinococcus multilocularis. Mol. Biochem. Parasitol. 139, 225–237.CrossRefPubMedGoogle Scholar
  8. 8.
    Zavala-Gongora, R., Kroner, A., Bernthaler, P., Knaus, P. and Brehm, K. (2006) A member of the transforming growth factor-b receptor family from Echinococcus multilocularis is activated by human bone morphogenetic protein 2. Mol. Biochem. Parasitol. 146, 265–271.CrossRefPubMedGoogle Scholar
  9. 9.
    Spiliotis, M., Konrad, C., Gelmedin, V., Tappe, D., Brückner, S., Mösch, H.U. and Brehm, K. (2006) Characterization of EmMPK1, an ERK-like MAP kinase from Echinococcus multilocularis which is activated in response to human epidermal growth factor. Int. J. Parasitol. 36, 1097–1112.CrossRefPubMedGoogle Scholar
  10. 10.
    Howell, M. J. and Matthaei, K. (1988) Points in question: in vitro culture of host or parasite cells? Int. J. Parasitol. 18, 883–884.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamashita, K., Uchino, J., Sato, N., Furuya, K. And Namieno, T. (1997) Establishment of a primary culture of Echinococcus multilocularis germinal cells. J. Gastroenterol. 32, 344–350.CrossRefPubMedGoogle Scholar
  12. 12.
    Kamiya, M. and Sato, H. (1990) Complete life cycle of the canid tapeworm, Echinococcus multilocularis, in laboratory rodents. FASEB J. 4, 3334–3339.PubMedGoogle Scholar
  13. 13.
    Reuter, S., Merkle, M., Brehm, K., Kern, P. and Manfras, B. (2003) Effect of amphotericin B on larval growth of Echinococcus multilocularis. Antimicrob. Agents Chemother. 47, 620–625.CrossRefPubMedGoogle Scholar
  14. 14.
    Brehm, K., Jensen, K. and Frosch, M. (2000) mRNA trans-splicing in the human parasitic cestode Echinococcus multilocularis. J. Biol. Chem. 275, 38311–38318.CrossRefPubMedGoogle Scholar
  15. 15.
    Konrad, C., Kroner, A., Spiliotis, M., Zavala-Gongora, R. and Brehm, K. (2003) Identification and molecular characterization of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis. Int. J. Parasitol. 33, 301–312.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Markus Spiliotis
    • 1
  • Klaus Brehm
    • 2
  1. 1.Institute for Hygiene and MicrobiologyGermany
  2. 2.Institute for Hygiene and Microbiology, Julius-Maximilians-University WürzburgGermany

Personalised recommendations