Microinjection pp 113-122 | Cite as

Bacteriophage φC31 Integrase Mediated Transgenesis in Xenopus laevis for Protein Expression at Endogenous Levels

  • Bryan G. Allen
  • Daniel L. Weeks
Part of the Methods in Molecular Biology book series (MIMB, volume 518)


Bacteriophage φC31 inserts its genome into that of its host bacterium via the integrase enzyme which catalyzes recombination between a phage attachment site (attP) and a bacterial attachment site (attB). Integrase requires no accessory factors, has a high efficiency of recombination, and does not need perfect sequence fidelity for recognition and recombination between these attachment sites. These imperfect attachment sites, or pseudo-attachment sites, are present in many organisms and have been used to insert transgenes in a variety of species. Here we describe the φC31 integrase approach to make transgenic Xenopuslaevis embryos.

Key words

Xenopus φC31 integrase transgenesis fluorescence 


  1. 1.
    Kroll K.L., Amaya E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–83.Google Scholar
  2. 2.
    Sparrow D.B., Latinkic B., Mohun T.J. (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res. 28, E12.CrossRefGoogle Scholar
  3. 3.
    Ogino H., McConnell W.B., Grainger R.M. (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech. Dev. 123, 103–13.CrossRefGoogle Scholar
  4. 4.
    Pan F.C., Chen Y., Loeber J., Henningfeld K., Pieler T. (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev. Dyn. 235, 247–52.CrossRefGoogle Scholar
  5. 5.
    Liu J., Jeppesen I., Nielsen K., Jensen T.G. (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther. 13, 1188–90.CrossRefGoogle Scholar
  6. 6.
    Kuhstoss S., Rao R.N. (1991) Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol. 222, 897–908.CrossRefGoogle Scholar
  7. 7.
    Thyagarajan B., Olivares E.C., Hollis R.P., Ginsburg D.S., Calos M.P. (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. & Cell. Biol. 21, 3926–34.CrossRefGoogle Scholar
  8. 8.
    Thorpe H.M., Smith M.C. (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Nat. Acad. Sci. USA 95, 5505–10.Google Scholar
  9. 9.
    Lutz K.A., Corneille S., Azhagiri A.K., Svab Z., Maliga P. (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J. 37, 906–13.CrossRefGoogle Scholar
  10. 10.
    Groth A.C., Olivares E.C., Thyagarajan B., Calos M.P. (2000) A phage integrase directs efficient site-specific integration in human cells. Proc. Nat. Acad. Sci. USA 97, 5995–6000.Google Scholar
  11. 11.
    Chalberg T.W., Genise H.L., Vollrath D., Calos M.P. (2005) phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest. Ophthalmol. Vis. Sci. 46, 2140–6.CrossRefGoogle Scholar
  12. 12.
    Thomason L.C., Calendar R., Ow D.W. (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol. Gen. & Genomics: MGG. 265, 1031–8.CrossRefGoogle Scholar
  13. 13.
    Olivares E.C., Hollis R.P., Chalberg T.W., Meuse L., Kay M.A., Calos M.P. (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol. 20, 1124–8.CrossRefGoogle Scholar
  14. 14.
    Held P.K., Olivares E.C., Aguilar C.P., Finegold M., Calos M.P., Grompe M. (2005) In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol. Ther. 11, 399–408.CrossRefGoogle Scholar
  15. 15.
    Belteki G., Gertsenstein M., Ow D.W., Nagy A. (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotechnol. 21, 321–4.CrossRefGoogle Scholar
  16. 16.
    Keravala A., Portlock J.L., Nash J.A., Vitrant D.G., Robbins P.D., Calos M.P. (2006) PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints. J. Gene Med. 8, 1008–17.CrossRefGoogle Scholar
  17. 17.
    Ishikawa Y., Tanaka N., Murakami K., Uchiyama T., Kumaki S., Tsuchiya S., Kugoh H., Oshimura M., Calos M.P., Sugamura K. (2006) Phage phiC31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines. J. Gene Med. 8, 646–53.CrossRefGoogle Scholar
  18. 18.
    Bertoni C., Jarrahian S., Wheeler T.M., Li Y., Olivares E.C., Calos M.P., Rando T.A. (2006) Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc. Natl. Acad. Sci. USA 103, 419–24.Google Scholar
  19. 19.
    Groth A.C., Fish M., Nusse R., Calos M.P. (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–82.CrossRefGoogle Scholar
  20. 20.
    Allen B.G., Weeks D.L. (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat. Methods 2, 897–8.CrossRefGoogle Scholar
  21. 21.
    Kuhn E.J., Geyer P.K. (2003) Genomic insulators: connecting properties to mechanism. Curr. Opin. Cell Biol. 15, 259–65.CrossRefGoogle Scholar
  22. 22.
    West A.G., Gaszner M., Felsenfeld G. (2002) Insulators: many functions, many mechanisms. Genes Dev. 16, 271–88.CrossRefGoogle Scholar
  23. 23.
    Hollis R.P., Stoll S.M., Sclimenti C.R., Lin J., Chen-Tsai Y., Calos M.P. (2003) Phage integrases for the construction and manipulation of transgenic mammals. Reprod. Biol. Endocrinol. 1, 79.CrossRefGoogle Scholar
  24. 24.
    Sive H.L., Grainger R.M., Harland R.M. (2000) Early Development of Xenopus laevi: A Laboratory Manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bryan G. Allen
    • 1
  • Daniel L. Weeks
    • 1
  1. 1.Department of BiochemistryUniversity of IowaIowa CityUSA

Personalised recommendations