Advertisement

Application of Electroporation Gene Therapy: Past, Current, and Future

  • Lluis M. Mir
Part of the Methods in Molecular Biology™ book series (MIMB, volume 423)

Abstract

Twenty-five years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulse delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a crossroad in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. The feasibility of electric pulse for gene transfer in humans is discussed taking into account that electric pulse delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments have made DNA electrotransfer more efficient and safer, this nonviral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and a respect for safe procedures will be key elements for the successful future transition of DNA electrotransfer to the clinics.

Keywords

electroporation electropermeabilization DNA electrotransfer electric pulses gene delivery nonviral gene therapy 

Notes

Acknowledgments

L.M. Mir thanks all his colleagues for stimulating discussions and Dr. Ruggero Cadossi for his comments on the manuscript.

References

  1. 1.
    1. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.PubMedGoogle Scholar
  2. 2.
    2. Schwan, H.P. (1957) Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209.PubMedGoogle Scholar
  3. 3.
    3. Kotnik, T. and Miklavcic, D. (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79, 670–679.CrossRefPubMedGoogle Scholar
  4. 4.
    4. Gimsa, J. and Wachner, D. (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81, 1888–1896.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Teissie, J., Knutson, V.P., Tsong, T.Y., and Lane, M.D. (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science. 216, 537–538.CrossRefPubMedGoogle Scholar
  6. 6.
    6. Mir, L.M., Banoun, H., and Paoletti, C. (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp. Cell. Res. 175, 15–25.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Chang, D.C. and Reese, T.S. (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12.CrossRefPubMedGoogle Scholar
  8. 8.
    8. Davalos, R.V., Mir, I.L., and Rubinsky, B. (2005) Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33, 223–231.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Miller, L., Leor, J., and Rubinsky, B. (2005) Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4, 699–705.PubMedGoogle Scholar
  10. 10.
    10. Teissie, J., Golzio, M., and Rols, M.P. (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim. Biophys. Acta. 1724, 270–280.PubMedGoogle Scholar
  11. 11.
    11. Lopez, A., Rols, M.P., and Teissie, J. (1988) 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry. 27, 1222–1228.CrossRefPubMedGoogle Scholar
  12. 12.
    12. Tieleman, D.P., Leontiadou, H., Mark, A.E., and Marrink, S.J. (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am. Chem. Soc. 125, 6382–6383.CrossRefPubMedGoogle Scholar
  13. 13.
    13. Tarek, M. (2005) Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88, 4045–4053.CrossRefPubMedGoogle Scholar
  14. 14.
    14. Mir, L.M., Bureau, M.F., Gehl, J., et al. (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. USA. 96, 4262–4267.CrossRefPubMedGoogle Scholar
  15. 15.
    15. Gehl, J., Sorensen, T.H., Nielsen, K., et al. (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim. Biophys. Acta. 1428, 233–240.PubMedGoogle Scholar
  16. 16.
    16. Satkauskas, S., Bureau, M.F., Puc, M., et al. (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol. Ther. 5, 133–140.CrossRefPubMedGoogle Scholar
  17. 17.
    17. Rols, M.P., Delteil, C., Golzio, M., Dumond, P., Cros, S., and Teissie, J. (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat. Biotechnol. 16, 168–171.CrossRefPubMedGoogle Scholar
  18. 18.
    18. Suzuki, T., Shin, B.C., Fujikura, K., Matsuzaki, T., and Takata, K. (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett. 425, 436–440.CrossRefPubMedGoogle Scholar
  19. 19.
    19. Aihara, H. and Miyazaki, J. (1998) Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870.CrossRefPubMedGoogle Scholar
  20. 20.
    20. Poddevin, B., Orlowski, S., Belehradek, J., Jr., and Mir, L.M. (1991) Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem. Pharmacol. 42 (Suppl.), S67–S75.CrossRefPubMedGoogle Scholar
  21. 21.
    21. Bazile, D., Mir, L.M., and Paoletti, C. (1989) Voltage-dependent introduction of a d[alpha]octothymidylate into electropermeabilized cells. Biochem. Biophys. Res. Commun. 159, 633–639.CrossRefPubMedGoogle Scholar
  22. 22.
    22. Casabianca-Pignède, M.-R., Mir, L.M., Le Pecq, J.-B., and Jacquemin-Sablon, A. (1991) Stability of antiricin antibodies introduced into DC-3F Chinese hamster cells by electropermeabilization. J Cell. Pharmacol. 2, 54–60.Google Scholar
  23. 23.
    23. Rols, M.P. and Teissie, J. (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys. J. 75, 1415–1423.CrossRefPubMedGoogle Scholar
  24. 24.
    24. Teissie, J. and Ramos, C. (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophys. J. 74, 1889–1898.CrossRefPubMedGoogle Scholar
  25. 25.
    25. Bureau, M.F., Gehl, J., Deleuze, V., Mir, L.M., and Scherman, D. (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim. Biophys. Acta. 1474, 353–359.PubMedGoogle Scholar
  26. 26.
    26. Satkauskas, S., Andrè, F., Bureau, M.F., et al. (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum. Gene. Ther. 16, 1194–1210.CrossRefPubMedGoogle Scholar
  27. 27.
    27. Faurie, C., Phez, E., Golzio, M., et al. (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim. Biophys. Acta. 1665, 92–100.CrossRefPubMedGoogle Scholar
  28. 28.
    28. Phez, E., Faurie, C., Golzio, M., Teissie, J., and Rols, M.P. (2005) New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim. Biophys. Acta. 1724, 248–254.PubMedGoogle Scholar
  29. 29.
    29. Teissie, J. and Blangero, C. (1984) Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion. Biochim. Biophys. Acta. 775, 446–448.CrossRefPubMedGoogle Scholar
  30. 30.
    30. Teissie, J. and Rols, M.P. (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65, 409–413.CrossRefPubMedGoogle Scholar
  31. 31.
    31. Miklavcic, D., Semrov, D., Mekid, H., and Mir, L.M. (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta. 1523, 73–83.PubMedGoogle Scholar
  32. 32.
    32. Sel, D., Mazeres, S., Teissie, J., and Miklavcic, D. (2003) Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation. IEEE Trans. Biomed. Eng. 50, 1221–1232.CrossRefPubMedGoogle Scholar
  33. 33.
    33. Belehradek, J., Jr., Orlowski, S., Ramirez, L.H., Pron, G., Poddevin, B., and Mir, L.M. (1994) Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim. Biophys. Acta. 1190, 155–163.CrossRefPubMedGoogle Scholar
  34. 34.
    34. Tounekti, O., Pron, G., Belehradek, J., Jr., and Mir, L.M. (1993) Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer. Res. 53, 5462–5469.PubMedGoogle Scholar
  35. 35.
    35. Poddevin, B., Belehradek, J., Jr., and Mir, L.M. (1990) Stable [57Co]-bleomycin complex with a very high specific radioactivity for use at very low concentrations. Biochem. Biophys. Res. Commun. 173, 259–264.CrossRefPubMedGoogle Scholar
  36. 36.
    36. Engstrom, P.E., Persson, B.R., and Salford, L.G. (1999) Studies of in vivo electropermeabilization by gamma camera measurements of (99m)Tc-DTPA. Biochim. Biophys. Acta. 1473, 321–328.PubMedGoogle Scholar
  37. 37.
    37. Gehl, J., Skovsgaard, T., and Mir, L.M. (2002) Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim. Biophys. Acta. 1569, 51–58.PubMedGoogle Scholar
  38. 38.
    38. Ramirez, L.H., Orlowski, S., An, D., et al. (1998) Electrochemotherapy on liver tumours in rabbits. Br. J. Cancer. 77, 2104–2111.CrossRefPubMedGoogle Scholar
  39. 39.
    39. Sersa, G., Cemazar, M., Parkins, C.S., and Chaplin, D.J. (1999) Tumour blood flow changes induced by application of electric pulses. Eur. J. Cancer. 35, 672–677.CrossRefPubMedGoogle Scholar
  40. 40.
    40. Sersa, G., Cemazar, M., Miklavcic, D., and Chaplin, D.J. (1999) Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer. Res. 19, 4017–4022.PubMedGoogle Scholar
  41. 41.
    41. Andrè, F. and Mir, L.M. (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene. Ther. 11 (Suppl. 1), S33–S42.CrossRefPubMedGoogle Scholar
  42. 42.
    42. Mir, L.M., Moller, P.H., Andrè, F., and Gehl, J. (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv. Genet. 54, 83–114.CrossRefPubMedGoogle Scholar
  43. 43.
    43. Peng, B., Zhao, Y., Lu, H., Pang, W., and Xu, Y. (2005) In vivo plasmid DNA electroporation resulted in transfection of satellite cells and lasting transgene expression in regenerated muscle fibers. Biochem. Biophys. Res. Commun. 338, 1490–1498.CrossRefPubMedGoogle Scholar
  44. 44.
    44. Liu, F. and Huang, L. (2002) A syringe electrode device for simultaneous injection of DNA and electrotransfer. Mol. Ther. 5, 323–328.CrossRefPubMedGoogle Scholar
  45. 45.
    45. Orlowski, S., Belehradek, J., Jr., Paoletti, C., and Mir, L.M. (1988) Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem. Pharmacol. 37, 4727–4733.CrossRefPubMedGoogle Scholar
  46. 46.
    46. Orlowski, S. and Mir, L.M. (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim. Biophys. Acta. 1154, 51–63.PubMedGoogle Scholar
  47. 47.
    47. Mir, L.M., Orlowski, S., Belehradek, J., Jr., and Paoletti, C. (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer. 27, 68–72.CrossRefPubMedGoogle Scholar
  48. 48.
    48. Belehradek, J., Jr., Orlowski, S., Poddevin, B., Paoletti, C., and Mir, L.M. (1991) Electrochemotherapy of spontaneous mammary tumours in mice. Eur. J. Cancer. 27, 73–76.CrossRefPubMedGoogle Scholar
  49. 49.
    49. Miklavcic, D., Beravs, K., Semrov, D., Cemazar, M., Demsar, F., and Sersa, G. (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys. J. 74, 2152–2158.CrossRefPubMedGoogle Scholar
  50. 50.
    50. Gothelf, A., Mir, L.M., and Gehl, J. (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer. Treat. Rev. 29, 371–387.CrossRefPubMedGoogle Scholar
  51. 51.
    51. Mir, L.M. (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry. 53, 1–10.CrossRefPubMedGoogle Scholar
  52. 52.
    52. Mir, L.M., Belehradek, M., Domenge, C., et al. (1991) [Electrochemotherapy, a new antitumor treatment: first clinical trial]. CR Acad. Sci. III. 313, 613–618.Google Scholar
  53. 53.
    53. Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J., Jr., and Mir, L.M. (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer. 72, 3694–3700.CrossRefPubMedGoogle Scholar
  54. 54.
    54. Domenge, C., Orlowski, S., Luboinski, B., et al. (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer. 77, 956–963.CrossRefPubMedGoogle Scholar
  55. 55.
    55. Heller, R., Jaroszeski, M.J., Glass, L.F., et al. (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer. 77, 964–971.CrossRefPubMedGoogle Scholar
  56. 56.
    56. Marty, M., Sersa, G., Garbay, J.R., et al. (2006) Electrochemotherapy - an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of the ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Supplements. 4, 3–13.CrossRefGoogle Scholar
  57. 57.
    57. Sersa, G. (2006) The State-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. Eur J Cancer Supplements. 4, 52–59.CrossRefGoogle Scholar
  58. 58.
    58. Mir, L.M., Gehl, J., Sersa, G., et al. (2006) Standard Operating Procedures of the Electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. Eur J Cancer Supplements. 4, 14–25.CrossRefGoogle Scholar
  59. 59.
    59. Gehl, J. and Mir, L.M. (1999) Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem. Biophys. Res. Commun. 261, 377–380.CrossRefPubMedGoogle Scholar
  60. 60.
    60. Heller, L.C. and Heller, R. (2006) In vivo electroporation for gene therapy. Hum Gene Ther. 17, 890–897.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Lluis M. Mir
    • 1
  1. 1.CNRS UMR 8121, Institut Gustave-RoussyUniv Paris-SudVillejuifFrance

Personalised recommendations