Normal Modes and Essential Dynamics

  • Steven Hayward
  • Bert L. de Groot
Part of the Methods Molecular Biology™ book series (MIMB, volume 443)

Summary

Normal mode analysis and essential dynamics analysis are powerful methods used for the analysis of collective motions in biomolecules. Their application has led to an appreciation of the importance of protein dynamics in function and the relationship between structure and dynamical behavior. In this chapter, the methods and their implementation are introduced and recent developments such as elastic networks and advanced sampling techniques are described.

Keywords

Collective protein dynamics Conformational flooding Conformational sampling Elastic network Principal component analysis 

References

  1. 1.
    1. Go, N., Noguti, T. and Nishikawa, T. (1983). Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80, 3696–3700.CrossRefPubMedGoogle Scholar
  2. 2.
    2. Levitt, M., Sander, C. and Stern, P. S. (1983). The normal modes of a protein: Native bovine pancreatic trypsin inhibitor. Int. J. Quant. Chem. 10, 181–199.Google Scholar
  3. 3.
    3. Brooks, B. and Karplus, M. (1983). Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 6571–6575.CrossRefPubMedGoogle Scholar
  4. 4.
    4. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I. C. (1975). Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Elber, R. and Karplus, M. (1987). Multiple conformational states of proteins: A molecular dynamics analysis of myoglobin. Science 235, 318–321.CrossRefPubMedGoogle Scholar
  6. 6.
    6. Tirion, M. M. (1996). Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Physical Review Letters 77, 1905–1908.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Tama, F. and Sanejouand, Y. H. (2001). Conformational change of proteins arising from normal mode calculations. Protein Engineering 14, 1–6.CrossRefPubMedGoogle Scholar
  8. 8.
    8. Garcia, A. E. (1992). Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 68, 2696–2699.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Amadei, A., Linssen, A. B. M. and Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Struct. Funct. Genet. 17, 412–425.CrossRefGoogle Scholar
  10. 10.
    10. Kitao, A., Hirata, F. and Go, N. (1991). The effects of solvent on the conformation and the collective motions of protein: normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum. J. Chem. Phys. 158, 447–472.CrossRefGoogle Scholar
  11. 11.
    11. Grubmüller, H. (1995). Predicting slow structural transitions in macromolecular systems: Conformational flooding. Phys. Rev. E. 52, 2893–2906.CrossRefGoogle Scholar
  12. 12.
    12. Amadei, A., Linssen, A. B. M., de Groot, B. L., van Aalten, D. M. F. and Berendsen, H. J. C. (1996). An efficient method for sampling the essential subspace of proteins. J. Biom. Str. Dyn. 13, 615–626.Google Scholar
  13. 13.
    13. de Groot, B. L., Amadei, A., van Aalten, D. M. F. and Berendsen, H. J. C. (1996). Towards an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin. J. Biomol. Str. Dyn. 13, 741–751.Google Scholar
  14. 14.
    14. de Groot, B. L., Amadei, A., Scheek, R. M., van Nuland, N. A. J. and Berendsen, H. J. C. (1996). An extended sampling of the configurational space of HPr from E. coli. Proteins: Struct. Funct. Genet. 26, 314–322.CrossRefGoogle Scholar
  15. 15.
    15. Hayward, S., Kitao, A. and Go, N. (1995). Harmonicity and anharmonicity in protein dynamics: a normal modes and principal component analysis. Proteins: Struct. Funct. Genet. 23, 177–186.CrossRefGoogle Scholar
  16. 16.
    16. Kitao, A., Hayward, S. and Go, N. (1998). Energy landscape of a native protein: jumping-among-minima model. Proteins: Struct. Funct. Genet. 33, 496–517.CrossRefGoogle Scholar
  17. 17.
    17. Amadei, A., de Groot, B. L., Ceruso, M. A., Paci, M., Nola, A. D. and Berendsen, H. J. C. (1999). A kinetic model for the internal motions of proteins: Diffusion between multiple harmonic wells. Proteins: Struct. Funct. Genet. 35, 283–292.CrossRefGoogle Scholar
  18. 18.
    18. Kitao, A. and Go, N. (1999). Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9, 143–281.CrossRefGoogle Scholar
  19. 19.
    19. Kitao, A., Hayward, S. and Go, N. (1994). Comparison of normal mode analyses on a small globular protein in dihedral angle space and Cartesian coordinate space. Biophysical Chemistry 52, 107–114.CrossRefPubMedGoogle Scholar
  20. 20.
    20. Tirion, M. M. and ben-Avraham, D. (1993). Normal mode analysis of G-actin. Journal of Molecular Biology 230, 186–195.CrossRefPubMedGoogle Scholar
  21. 21.
    21. Hayward, S. (2001). Normal mode analysis of biological molecules. In Computational Biochemistry and Biophysics (Becker, O. M., Mackerell Jr, A. D., Roux, B. & Watanabe, M., eds.), pp. 153–168. Marcel Dekker Inc, New York.Google Scholar
  22. 22.
    22. Go, N. (1990). A theorem on amplitudes of thermal atomic fluctuations in large molecules assuming specific conformations calculated by normal mode analysis. Biophysical Chemistry 35, 105–112.CrossRefPubMedGoogle Scholar
  23. 23.
    23. Marques, O. and Sanejouand, Y.-H. (1995). Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins 23, 557–560.CrossRefPubMedGoogle Scholar
  24. 24.
    24. Chennubhotla, C., Rader, A. J., Yang, L. W. and Bahar, I. (2005). Elastic network models for understanding biomolecular machinery: From enzymes to supramolecular assemblies. Physical Biology 2, S173–S180.CrossRefPubMedGoogle Scholar
  25. 25.
    25. Bahar, I. and Rader, A. J. (2005). Coarse-grained normal mode analysis in structural biology. Current Opinion in Structural Biology 15, 586–592.CrossRefPubMedGoogle Scholar
  26. 26.
    26. van Aalten, D. M. F., de Groot, B. L., Berendsen, H. J. C., Findlay, J. B. C. and Amadei, A. (1997). A comparison of techniques for calculating protein essential dynamics. J. Comp. Chem. 18, 169–181.CrossRefGoogle Scholar
  27. 27.
    27. van Aalten, D. M. F., Conn, D. A., de Groot, B. L., Findlay, J. B. C., Berendsen, H. J. C. and Amadei, A. (1997). Protein dynamics derived from clusters of crystal structures. Biophys. J. 73, 2891–2896.CrossRefPubMedGoogle Scholar
  28. 28.
    28. de Groot, B. L., Hayward, S., Aalten, D. M. F. v., Amadei, A. and Berendsen, H. J. C. (1998). Domain motions in bacteriophage T4 lysozyme; a comparison between molecular dynamics and crystallographic data. Proteins: Struct. Funct. Genet. 31, 116–127.CrossRefGoogle Scholar
  29. 29.
    29. de Groot, B. L., Vriend, G. and Berendsen, H. J. C. (1999). Conformational changes in the chaperonin GroEL: New insights into the allosteric mechanism. J. Mol. Biol. 286, 1241–1249.CrossRefPubMedGoogle Scholar
  30. 30.
    30. Abseher, R., Horstink, L., Hilbers, C. W. and Nilges, M. (1998). Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap. Proteins: Struct. Funct. Genet. 31, 370–382.CrossRefGoogle Scholar
  31. 31.
    31. Qian, B., Ortiz, A. R. and Baker, D. (2004). Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc. Natl. Acad. Sci. USA 101, 15346–15351.CrossRefPubMedGoogle Scholar
  32. 32.
    32. Balsera, M. A., Wriggers, W., Oono, Y. and Schulten, K. (1996). Principal component analysis and long time protein dynamics. J. Phys. Chem. 100, 2567–2572.CrossRefGoogle Scholar
  33. 33.
    33. Clarage, J. B., Romo, T., Andrews, B. K., Pettitt, B. M. and Jr., G. N. P. (1995). A sampling problem in molecular dynamics simulations of macromolecules. Proc. Natl. Acad. Sci. USA 92, 3288–3292.CrossRefPubMedGoogle Scholar
  34. 34.
    34. de Groot, B. L., van Aalten, D. M. F., Amadei, A. and Berendsen, H. J. C. (1996). The consistency of large concerted motions in proteins in Molecular Dynamics simulations. Biophys. J. 71, 1707–1713.CrossRefPubMedGoogle Scholar
  35. 35.
    35. Amadei, A., Ceruso, M. A. and Nola, A. D. (1999). On the convergence of the conforma-tional coordinates basis set obtained by the essential dynamics analysis of proteins' molecular dynamics simulations. Proteins: Struct. Funct. Genet. 36, 419–424.CrossRefGoogle Scholar
  36. 36.
    36. Hess, B. (2000). Similarities between principal components of protein dynamics and random diffusion. Phys. Rev. E 62, 8438–8448.CrossRefGoogle Scholar
  37. 37.
    37. Hess, B. (2002). Convergence of sampling in protein simulations. Phys. Rev. E 65, 031910.CrossRefGoogle Scholar
  38. 38.
    38. van Aalten, D. M. F., Findlay, J. B. C., Amadei, A. and Berendsen, H. J. C. (1995). Essential dynamics of the cellular retinol binding protein—evidence for ligand induced conformational changes. Prot. Eng. 8, 1129–1136.CrossRefGoogle Scholar
  39. 39.
    39. Laio, A. and Parrinello, M. (2002). Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562–12566.CrossRefPubMedGoogle Scholar
  40. 40.
    40. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., Ferguson, D., Seibel, G. and Kollman, P. (1995). Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications 91, 1–41.CrossRefGoogle Scholar
  41. 41.
    Amberteam. (2004). Amber 8 users' manual.Google Scholar
  42. 42.
    42. Tama, F., Valle, M., Frank, J. and Brooks, C. L. (2003). Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 100, 9319–9323.CrossRefPubMedGoogle Scholar
  43. 43.
    43. Mu, Y., Nguyen, P. H. and Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins: Structure, Function, and Bioinformat-ics 58, 45–52.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Steven Hayward
    • 1
  • Bert L. de Groot
    • 2
  1. 1.School of Computing Sciences and School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.Max Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations