Molecular Dynamics Simulations

  • Erik R. Lindahl
Part of the Methods Molecular Biology™ book series (MIMB, volume 443)

Summary

Molecular simulation is a very powerful toolbox in modern molecular modeling, and enables us to follow and understand structure and dynamics with extreme detail—literally on scales where motion of individual atoms can be tracked. This chapter focuses on the two most commonly used methods, namely, energy minimization and molecular dynamics, that, respectively, optimize structure and simulate the natural motion of biological macromolecules. The common theoretical framework based on statistical mechanics is covered briefly as well as limitations of the computational approach, for instance, the lack of quantum effects and limited timescales accessible. As a practical example, a full simulation of the protein lysozyme in water is described step by step, including examples of necessary hardware and software, how to obtain suitable starting molecular structures, immersing it in a solvent, choosing good simulation parameters, and energy minimization. The chapter also describes how to analyze the simulation in terms of potential energies, structural fluctuations, coordinate stability, geometrical features, and, finally, how to create beautiful ray-traced movies that can be used in presentations.

Keywords

Energy minimization Equilibration Force field Molecular dynamics Position restraints Protein Secondary structure Simulation Solvent Trajectory analysis 

References

  1. 1.
    1. Alder, B.J. and Wainwright, T.E. (1957) Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209.CrossRefGoogle Scholar
  2. 2.
    2. Rahman, A. and Stillinger, F.H. (1971) Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359.CrossRefGoogle Scholar
  3. 3.
    3. McCammon, J.A. and Karplus, M. (1977) Internal motions of antibody molecules. Nature 268, 765–766.CrossRefPubMedGoogle Scholar
  4. 4.
    4. Allen, M.P. and Tildesley, D.J. (1989) Computer Simulation of Liquids. Clarendon Press, New York, NY.Google Scholar
  5. 5.
    5. Frenkel, D. and Smit, B. (2001) Understanding Molecular Simulation. Academic Press, New York, NY.Google Scholar
  6. 6.
    6. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., and Jorgensen, W.L. (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487.CrossRefGoogle Scholar
  7. 7.
    7. MacKerell, A.D. Jr, et al. (1998) All-atom empirical potential for molecular modeling and dynamics Studies of proteins. J. Phys. Chem. B 102, 3586–3616.CrossRefGoogle Scholar
  8. 8.
    8. Oostenbrink, C., Villa, A., Mark, A.E., and van Gunsteren, W.F. (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Wang, J., Cieplak, P., and Kollman, P.A. (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074.CrossRefGoogle Scholar
  10. 10.
    10. Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York, NY.Google Scholar
  11. 11.
    11. Essman, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., and Pedersen, L.G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593.CrossRefGoogle Scholar
  12. 12.
    12. Ryckaert, J.P, Ciccotti, G., and Berendsen, H.J.C. (1977) Numerical ;ntegration of the cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327–341.CrossRefGoogle Scholar
  13. 13.
    13. Hess, B., Bekker, H., Berendsen, H.J.C., and Fraaije, J.G.E.M. (1998) LINCS: A linear constraint solver for molecular simulation. J. Comput. Chem. 18, 1463–1472.CrossRefGoogle Scholar
  14. 14.
    14. Lindahl, E., Hess, B., and van der Spoel, D. (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317.Google Scholar
  15. 15.
    15. Case, D.A., et al. (2005) The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688.CrossRefPubMedGoogle Scholar
  16. 16.
    16. Brooks, B.R., et al. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.CrossRefGoogle Scholar
  17. 17.
    17. Phillips, J.C., et al. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.CrossRefPubMedGoogle Scholar
  18. 18.
    18. DeLano, W.L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA. http://www.PyMOL.org.Google Scholar
  19. 19.
    19. Fleming, A. (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc. Royal Soc. Ser. B 93, 306–317.CrossRefGoogle Scholar
  20. 20.
    20. Blake, C.C., Koenig, D.F., Mair, G.A., North, A.C., Phillips, D.C., and Sarma, V.R. (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å ngstrom resolution. Nature, 206, 757–761.CrossRefPubMedGoogle Scholar
  21. 21.
    21. Rose, D.R., Phipps, J., Michniewicz, J., Birnbaum, G.I., Ahmed, F.R., Muir, A., Anderson, W.F., and Narang, S. (1988) Crystal structure of T4-lysozyme generated from synthetic coding DNA expressed in Escherichia coli. Protein Eng. 2, 277–282.CrossRefPubMedGoogle Scholar
  22. 22.
    22. Jorgensen, W.L., Chandrasekhar J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935.CrossRefGoogle Scholar
  23. 23.
    23. Berendsen, H.J.C, Postma, J.P.M., and van Gunsteren, W.F. (1981) Interaction models for water in relation to protein hydration, in Intermolecular Forces (Pullman, B., ed.), D. Reidel Publishing Company, Dordrecht, Germany, pp. 331–342.Google Scholar
  24. 24.
    24. Berendsen, H.J.C., Postma, J.P.M., DiNola, A., and Haak, J.R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.CrossRefGoogle Scholar
  25. 25.
    25. Kabsch, W. and Sanders, C. (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22, 2577–2637.CrossRefPubMedGoogle Scholar
  26. 26.
    26. Jorgensen, W.L. and Madura, J.D. (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys. 56, 1381–1392.CrossRefGoogle Scholar
  27. 27.
    27. Mahoney, M.W. and Jorgensen, W.L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922.CrossRefGoogle Scholar
  28. 28.
    28. Nosé, S. (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268.CrossRefGoogle Scholar
  29. 29.
    29. Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190.CrossRefGoogle Scholar
  30. 30.
    30. Kasson, P., Kelley, N., Singhal, N., Vrjlic, M., Brunger, A., and Pande, V.S. (2006) Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. Proc. Natl. Acad. Sci. 103, 11916–11921.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Erik R. Lindahl
    • 1
  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden

Personalised recommendations