HIV Protocols pp 375-391

Part of the Methods In Molecular Biology™ book series (MIMB, volume 485)

Multiparameter Flow Cytometry Monitoring of T Cell Responses

  • Holden T. Maecker


HIV vaccine research increasingly uses polychromatic flow cytometry as a tool to monitor T cell responses. The use of this technology allows for the analysis of highly defined subsets of cells with unique phenotypes and functions. Ultimately, such studies may identify surrogate markers of protection from disease progression. However, this powerful technology comes with a number of technical hurdles, and there is a need to standardize the assays and protocols used in clinical trial monitoring. Here an optimized protocol, with variations for specific circumstances, is presented. This protocol covers the analysis of multiple cytokines, cell surface markers, and other functional markers such as perforin, CD107, and CD154. While the protocol can be adapted to various numbers of fluorescence parameters, optimized panels of 8–10 colors are presented.

Key words

Antigen-specific intracellular staining multicolor polychromatic fixation permeabilization AIDS vaccine research 


  1. 1.
    Pantaleo, G., Koup, R. A. (2004).Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10, 806.CrossRefPubMedGoogle Scholar
  2. 2.
    Hel, Z., Nacsa, J., Tryniszewska, E., et al. (2002).Containment of simian immunodeficiency virus infection in vaccinated macaques: correlation with the magnitude of virus-specific pre- and postchallenge CD4(+) and CD8(+) T cell responses. J Immunol 169, 4778.PubMedGoogle Scholar
  3. 3.
    Mooij, P., Nieuwenhuis, I. G., Knoop, C. J., et al. (2004).Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection. J Virol 78, 3333.CrossRefPubMedGoogle Scholar
  4. 4.
    Boyer, J. D., Maciag, P. C., Parkinson, R., et al. (2005).Rhesus macaques with high levels of vaccine induced IFN-gamma producing cells better control viral set-point following challenge with SIV239. Vaccine.Google Scholar
  5. 5.
    Sun, Y., Schmitz, J. E., Acierno, P. M., et al. (2005).Dysfunction of simian immunodeficiency virus/simian human immunodeficiency virus-induced IL-2 expression by central memory CD4+ T lymphocytes. J Immunol 174, 4753.PubMedGoogle Scholar
  6. 6.
    Acierno, P. M., Schmitz, J. E., Gorgone, D. A., et al. (2006).Preservation of Functional Virus-Specific Memory CD8+ T Lymphocytes in Vaccinated, Simian Human Immunodeficiency Virus-Infected Rhesus Monkeys. J Immunol 176, 5338.PubMedGoogle Scholar
  7. 7.
    Sun, Y., Schmitz, J. E., Buzby, A. P., et al. (2006).Virus-specific cellular immune correlates of survival in vaccinated monkeys after simian immunodeficiency virus challenge. J Virol.Google Scholar
  8. 8.
    Letvin, N. L., Mascola, J. R., Sun, Y., et al. (2006).Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science 312, 1530.CrossRefPubMedGoogle Scholar
  9. 9.
    Migueles, S. A., Laborico, A. C., Shupert, W. L., et al. (2002).HIV-specific CD8(+) T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3, 1061.CrossRefPubMedGoogle Scholar
  10. 10.
    Boaz, M. J., Waters, A., Murad, S., et al. (2002).Presence of HIV-1 Gag-specific IFN-gamma+IL-2+ and CD28+IL-2+CD4 T cell responses is associated with nonprogression in HIV-1 infection. J Immunol 169, 6376.PubMedGoogle Scholar
  11. 11.
    Betts, M. R., Nason, M. C., West, S. M., et al. (2006).HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T-cells. Blood 107, 4781.CrossRefPubMedGoogle Scholar
  12. 12.
    Younes, S. A., Yassine-Diab, B., Dumont, A. R., et al. (2003).HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J Exp Med 198, 1909.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen, G., Shankar, P., Lange, C., et al. (2001).CD8 T cells specific for human immunodeficiency virus, Epstein-Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood 98, 156.CrossRefPubMedGoogle Scholar
  14. 14.
    Champagne, P., Ogg, G. S., King, A. S., et al. (2001).Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106.CrossRefPubMedGoogle Scholar
  15. 15.
    Harari, A., Rizzardi, G. P., Ellefsen, K., et al. (2002).Analysis of HIV-1- and CMV-specific memory CD4 T-cell responses during primary and chronic infection. Blood 100, 1381.CrossRefPubMedGoogle Scholar
  16. 16.
    Ellefsen, K., Harari, A., Champagne, P., et al. (2002).Distribution and functional analysis of memory antiviral CD8 T cell responses in HIV-1 and cytomegalovirus infections. Eur J Immunol 32, 3756.CrossRefPubMedGoogle Scholar
  17. 17.
    Appay, V., Dunbar, P. R., Callan, M., et al. (2002).Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8, 379.CrossRefPubMedGoogle Scholar
  18. 18.
    Paiardini, M., Cervasi, B., Albrecht, H., et al. (2005).Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals. J Immunol174, 2900.PubMedGoogle Scholar
  19. 19.
    Nomura, L. E., Emu, B., Hoh, R., et al. (2006).IL-2 production correlates with effector cell differentiation in HIV-specific CD8+ T cells. AIDS Res Ther 3, 18.CrossRefPubMedGoogle Scholar
  20. 20.
    Day, C. L., Kaufmann, D. E., Kiepiela, P., et al. (2006).PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350.CrossRefPubMedGoogle Scholar
  21. 21.
    Trautmann, L., Janbazian, L., Chomont, N., et al. (2006).Upregulation of PD-1 expression on HIV-specific CD8(+) T cells leads to reversible immune dysfunction. Nat Med 12, 1198.CrossRefPubMedGoogle Scholar
  22. 22.
    Savarino, A., Bottarel, F., Malavasi, F., et al. (2000).Role of CD38 in HIV-1 infection: an epiphenomenon of T-cell activation or an active player in virus/host interactions? Aids 14, 1079.CrossRefPubMedGoogle Scholar
  23. 23.
    Roederer, M. (2001).Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry45, 194.CrossRefPubMedGoogle Scholar
  24. 24.
    Maecker, H. T., Frey, T., Nomura, L. E., et al. (2004).Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A62, 169.CrossRefPubMedGoogle Scholar
  25. 25.
    Maecker, H. T., Trotter, J. (2006).Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A.Google Scholar
  26. 26.
    Perfetto, S. P., Ambrozak, D., Nguyen, R., et al. (2006).Quality assurance for polychromatic flow cytometry. Nat Protocols1, 1522.CrossRefGoogle Scholar
  27. 27.
    Maecker, H. T. (2004).in (T. S. Hawley, and R. G. Hawley, eds.), Flow Cytometry Protocols, p. 95. Humana Press, Totowa, NJ.Google Scholar
  28. 28.
    Maecker, H. T. (2007).in (T. Kieber-Emmons, ed.), Cancer Vaccine Protocols. Humana Press, Totowa, NJ.Google Scholar
  29. 29.
    Lamoreaux, L. L., Roederer, M., Koup, R. (2006).Intracellular cytokine optimization and standard operating procedure. Nat Protocols 1, 1507.CrossRefGoogle Scholar
  30. 30.
    Maecker, H. T., Dunn, H. S., Suni, M. A., et al. (2001).Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 255, 27.CrossRefPubMedGoogle Scholar
  31. 31.
    Maecker, H. T., Rinfret, A., D’Souza, P., et al. (2005).Standardization of cytokine flow cytometry assays. BMC Immunol 6, 13.CrossRefPubMedGoogle Scholar
  32. 32.
    Suni, M. A., Dunn, H. S., Orr, P. L., et al. (2003).Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunology 4, 9.CrossRefPubMedGoogle Scholar
  33. 33.
    Disis, M. L., dela Rosa, C., Goodell, V., et al. (2006).Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J Immunol Methods 308, 13.CrossRefPubMedGoogle Scholar
  34. 34.
    Waldrop, S. L., Davis, K. A., Maino, V. C., et al. (1998).Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J Immunol 161, 5284.Google Scholar
  35. 35.
    Nomura, L. E., Walker, J. M., Maecker, H. T. (2000).Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40, 60.CrossRefPubMedGoogle Scholar
  36. 36.
    Maecker, H. T., Ghanekar, S. A., Suni, M. A., et al. (2001).Factors affecting the efficiency of CD8+ T cell cross-priming with exogenous antigens. J Immunol 166, 7268.PubMedGoogle Scholar
  37. 37.
    Nomura, L. E., DeHaro, E. D., Martin, L. N., et al. (2003).Optimal preparation of rhesus macaque blood for cytokine flow cytometric analysis. Cytometry 53A, 28.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Holden T. Maecker
    • 1
  1. 1.Palo AltoUSA

Personalised recommendations