LC3 and Autophagy

  • Isei Tanida
  • Takashi Ueno
  • Eiki Kominami
Part of the Methods in Molecular Biology™ book series (MIMB, volume 445)


Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a soluble protein with a molecular mass of ∼17 kDa that is distributed ubiquitously in mammalian tissues and cultured cells. During autophagy, autophagosomes engulf cytoplasmic components, including cytosolic proteins and organelles. Concomitantly, a cytosolic form of LC3 (LC3-I) is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate (LC3-II), which is recruited to autophagosomal membranes. Autophagosomes fuse with lysosomes to form autolysosomes, and intra-autophagosomal components are degraded by lysosomal hydrolases. At the same time, LC3-II in autolysosomal lumen is degraded. Thus, lysosomal turnover of the autophagosomal marker LC3-II reflects starvation-induced autophagic activity, and detecting LC3 by immunoblotting or immunofluorescence has become a reliable method for monitoring autophagy and autophagy-related processes, including autophagic cell death. Here we describe basic protocols to assay for endogenous LC3-II by immunoblotting, immunoprecipitation, and immunofluorescence.

Key Words

LC3 lipidation ubiquitylation-like reaction autophagosome autolysosome autophagy ATG conjugation system 


  1. 1.
    Eskelinen, E. L. (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1, 1–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Kadowaki, M., Karim, M. R., Carpi, A., and Miotto, G. (2006) Nutrient control of macroautophagy in mammalian cells. Mol. Aspects Med. 27, 426–443.CrossRefPubMedGoogle Scholar
  3. 3.
    Wileman, T. (2006) Aggresomes and autophagy generate sites for virus replication. Science 312, 875–878.CrossRefPubMedGoogle Scholar
  4. 4.
    Rubinsztein, D. C., Difiglia, M., Heintz, N., et al. (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Munz, C. (2006) Autophagy and antigen presentation. Cell Microbiol. 8, 891–898.CrossRefPubMedGoogle Scholar
  6. 6.
    Deretic, V., Singh, S., Master, S., et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol. 8, 719–727.CrossRefPubMedGoogle Scholar
  7. 7.
    Mann, S. S., and Hammarback, J. A. (1994) Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem. 269, 11492–11497.PubMedGoogle Scholar
  8. 8.
    Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.CrossRefPubMedGoogle Scholar
  9. 9.
    Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., and Yoshimori, T. (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812.CrossRefPubMedGoogle Scholar
  11. 11.
    Sou, Y. S., Tanida, I., Komatsu, M., Ueno, T., and Kominami, E. (2006) Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem. 281, 3017–3024.CrossRefPubMedGoogle Scholar
  12. 12.
    Tanida, I., Tanida-Miyake, E., Ueno, T., and Kominami, E. (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem. 276, 1701–1706.PubMedGoogle Scholar
  13. 13.
    Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T., and Kominami, E. (2002) Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J. Biol. Chem. 277, 13739–13744.CrossRefPubMedGoogle Scholar
  14. 14.
    Tanida, I., Ueno, T., and Kominami, E. (2004) LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–2518.CrossRefPubMedGoogle Scholar
  15. 15.
    Ueno, T., Muno, D., and Kominami, E. (1991) Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J. Biol. Chem. 266, 18995–18999.PubMedGoogle Scholar
  16. 16.
    Ueno, T., Ishidoh, K., Mineki, R., et al. (1999) Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J. Biol. Chem. 274, 15222–15229.CrossRefPubMedGoogle Scholar
  17. 17.
    Tamai, M., Matsumoto, K., Omura, S., Koyama, I., Ozawa, Y., and Hanada, K. (1986) In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. J. Pharmacobiodyn. 9, 672–677.PubMedGoogle Scholar
  18. 18.
    Umezawa, H., Takeuchi, T., Linuma, H., Suzuki, K., and Ito, M. (1970) A new microbial product, oudenone, inhibiting tyrosine hydroxylase. J. Antibiot. (Tokyo) 23, 514–518.Google Scholar
  19. 19.
    Jager, S., Bucci, C., Tanida, I., et al. (2004) Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117, 4837–4848.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Isei Tanida
    • 1
  • Takashi Ueno
    • 1
  • Eiki Kominami
    • 1
  1. 1.Department of BiochemistryJuntendo University School of MedicineBunkyo-kuJapan

Personalised recommendations