Autophagosome and Phagosome pp 77-88 | Cite as
LC3 and Autophagy
Summary
Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a soluble protein with a molecular mass of ∼17 kDa that is distributed ubiquitously in mammalian tissues and cultured cells. During autophagy, autophagosomes engulf cytoplasmic components, including cytosolic proteins and organelles. Concomitantly, a cytosolic form of LC3 (LC3-I) is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate (LC3-II), which is recruited to autophagosomal membranes. Autophagosomes fuse with lysosomes to form autolysosomes, and intra-autophagosomal components are degraded by lysosomal hydrolases. At the same time, LC3-II in autolysosomal lumen is degraded. Thus, lysosomal turnover of the autophagosomal marker LC3-II reflects starvation-induced autophagic activity, and detecting LC3 by immunoblotting or immunofluorescence has become a reliable method for monitoring autophagy and autophagy-related processes, including autophagic cell death. Here we describe basic protocols to assay for endogenous LC3-II by immunoblotting, immunoprecipitation, and immunofluorescence.
Key Words
LC3 lipidation ubiquitylation-like reaction autophagosome autolysosome autophagy ATG conjugation systemReferences
- 1.Eskelinen, E. L. (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1, 1–10.CrossRefPubMedGoogle Scholar
- 2.Kadowaki, M., Karim, M. R., Carpi, A., and Miotto, G. (2006) Nutrient control of macroautophagy in mammalian cells. Mol. Aspects Med. 27, 426–443.CrossRefPubMedGoogle Scholar
- 3.Wileman, T. (2006) Aggresomes and autophagy generate sites for virus replication. Science 312, 875–878.CrossRefPubMedGoogle Scholar
- 4.Rubinsztein, D. C., Difiglia, M., Heintz, N., et al. (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22.CrossRefPubMedGoogle Scholar
- 5.Munz, C. (2006) Autophagy and antigen presentation. Cell Microbiol. 8, 891–898.CrossRefPubMedGoogle Scholar
- 6.Deretic, V., Singh, S., Master, S., et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol. 8, 719–727.CrossRefPubMedGoogle Scholar
- 7.Mann, S. S., and Hammarback, J. A. (1994) Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem. 269, 11492–11497.PubMedGoogle Scholar
- 8.Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.CrossRefPubMedGoogle Scholar
- 9.Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84–91.CrossRefPubMedGoogle Scholar
- 10.Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., and Yoshimori, T. (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812.CrossRefPubMedGoogle Scholar
- 11.Sou, Y. S., Tanida, I., Komatsu, M., Ueno, T., and Kominami, E. (2006) Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem. 281, 3017–3024.CrossRefPubMedGoogle Scholar
- 12.Tanida, I., Tanida-Miyake, E., Ueno, T., and Kominami, E. (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem. 276, 1701–1706.PubMedGoogle Scholar
- 13.Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T., and Kominami, E. (2002) Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J. Biol. Chem. 277, 13739–13744.CrossRefPubMedGoogle Scholar
- 14.Tanida, I., Ueno, T., and Kominami, E. (2004) LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–2518.CrossRefPubMedGoogle Scholar
- 15.Ueno, T., Muno, D., and Kominami, E. (1991) Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J. Biol. Chem. 266, 18995–18999.PubMedGoogle Scholar
- 16.Ueno, T., Ishidoh, K., Mineki, R., et al. (1999) Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J. Biol. Chem. 274, 15222–15229.CrossRefPubMedGoogle Scholar
- 17.Tamai, M., Matsumoto, K., Omura, S., Koyama, I., Ozawa, Y., and Hanada, K. (1986) In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. J. Pharmacobiodyn. 9, 672–677.PubMedGoogle Scholar
- 18.Umezawa, H., Takeuchi, T., Linuma, H., Suzuki, K., and Ito, M. (1970) A new microbial product, oudenone, inhibiting tyrosine hydroxylase. J. Antibiot. (Tokyo) 23, 514–518.Google Scholar
- 19.Jager, S., Bucci, C., Tanida, I., et al. (2004) Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117, 4837–4848.CrossRefPubMedGoogle Scholar