Nuclear Transfer Protocols pp 151-168

Part of the Methods in Molecular Biology™ book series (MIMB, volume 348)

Nuclear Transfer in Nonhuman Primates

  • Shoukhrat M. Mitalipov
  • Don P. Wolf


The nonhuman primate is a highly relevant model for the study of human diseases, and currently there is a significant need for populations of animals with specific genotypes that can not be satisfied by the capture of animals from the wild or by conventional breeding. There is an even greater need for genetically identical animals in vaccine development or tissue transplantation research, where immune system function is under study. Efficient somatic cell nuclear transfer (SCNT) procedures could provide a source for genetically identical nonhuman primates for biomedical research. SCNT offers the possibility of cloning animals using cultured cells and potentially provides an alternative approach for the genetic modification of primates. The opportunity to introduce precise genetic modifications into cultured cells by gene targeting procedures, and then use these cells as nuclear donors in SCNT, has potential application in the production of loss-of-function monkey models of human diseases. We were initially successful in producing monkeys by NT using embryonic blastomeres as the source of donor nuclei and have repeated that success. However, when somatic cells are used as nuclear donor cells, the developmental potential of monkey SCNT embryos is limited, and somatic cell cloning has not yet been accomplished in primates. High rates of in vitro development to blastocysts, comparable with in vitro fertilization controls, and successful production of rhesus monkeys by NT from embryonic blastomeres suggests that basic cloning procedures, including enucleation, fusion, and activation, are consistent with the production of viable embryos. Although modifications or additional steps in SCNT are clearly warranted, the basic procedures will likely be similar to those extant for embryonic cell NT. In this chapter, we describe detailed protocols for rhesus macaque embryonic cell NT, including oocyte and embryo production, micromanipulation, and embryo transfer in nonhuman primates.

Key Words

Monkey embryos nuclear transfer cloning 


  1. 1.
    Meng, L., Ely, J. J., Stouffer, R. L., and Wolf, D. P. (1997) Rhesus monkeys produced by nuclear transfer. Biol Reprod. 57, 454–459.CrossRefPubMedGoogle Scholar
  2. 2.
    Mitalipov, S. M., Yeoman, R. R., Nusser, K. D., and Wolf, D. P. (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol. Reprod. 66, 1367–1373.CrossRefPubMedGoogle Scholar
  3. 3.
    Ouhibi, N., Zelinski-Wooten, M. B., Thomson, J. A., and Wolf, D. P. (2001) Assisted fertilization and nuclear transfer in nonhuman primates, in Assisted fertilization and nuclear transfer in mammals. Contemporary Endocrinology Series (Wolf, D. P., Zelinski-Wooten, M. B. eds.), Humana, Totowa, NJ, pp. 253–284.Google Scholar
  4. 4.
    Mitalipov, S. M., Kuo, H. C., Hennebold, J. D., and Wolf, D. P. (2003) Oct-4 expression in pluripotent cells of the rhesus monkey. Biol. Reprod. 69, 1785–1792.CrossRefPubMedGoogle Scholar
  5. 5.
    Narita, J., Takada, T., Kimura, H., Terao, K., Sakuragawa, N., and Torii, R. (2003) Cynomolgus monkey blastocyst produced by nuclear transfer using amniotic epithelial cells. Theriogenology 59, 276.Google Scholar
  6. 6.
    Bavister, B. D., Boatman, D. E., Collins, K., Dierschke, D. J., and Eisele, S. G. (1984) Birth of rhesus monkey infant after in vitro fertilization and nonsurgical embryo transfer. Proc. Natl. Acad. Sci. USA. 81, 2218–2222.CrossRefPubMedGoogle Scholar
  7. 7.
    McKiernan, S. H., and Bavister, B. D. (2000) Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum Reprod. 15, 157–164.CrossRefPubMedGoogle Scholar
  8. 8.
    Zelinski-Wooten, M. B., Hutchison, J. S., Hess, D. L., Wolf, D. P., and Stouffer, R. L. (1995) Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum. Reprod. 10, 1658–1666.PubMedGoogle Scholar
  9. 9.
    Wolf, D. P., Alexander, M., Zelinski-Wooten, M., and Stouffer, R. L. (1996) Maturity and fertility of rhesus monkey oocytes collected at different intervals after an ovulatory stimulus (human chorionic gonadotropin) in vitro fertilization cycles. Mol. Reprod. Dev. 43, 76–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Lanzendorf, S. E., Gliessman, P. M., Archibong, A. E., Alexander, M., and Wolf, D. P. (1990) Collection and quality of rhesus monkey semen. Mol. Reprod. Dev. 25, 61–66.CrossRefPubMedGoogle Scholar
  11. 11.
    Loi, P., Clinton, M., Barboni, B., et al. (2002) Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod. 67, 126–132.CrossRefPubMedGoogle Scholar
  12. 12.
    Nusser, K. D., Mitalipov, S., Widmann, A., Gerami-Naini, B., Yeoman, R. R., and Wolf, D. P. (2001) Developmental competence of oocytes after, I. C.SI in the rhesus monkey. Hum. Reprod. 16, 130–137.CrossRefPubMedGoogle Scholar
  13. 13.
    Yeoman, R. R., Gerami-Naini, B., Mitalipov, S. M., Nusser, K. D., Widmann, A. A., and Wolf, D. P. (2002) Reduced fertilization after, I. C.SI with frozen/thawed sperm in rhesus macaques. Biol. Reprod. 62(Suppl 1), 319.Google Scholar
  14. 14.
    Mitalipov, S. M., Yeoman, R. R., Kuo, H. C., et al. (2002) Extended incubation of rhesus monkey cryopreserved sperm post thaw results in improved fertilization rates after, I. C.SI. Fertil. Steril. 78(Suppl 1), 15.CrossRefGoogle Scholar
  15. 15.
    Wolf, D. P., Thormahlen, S., Ramsey, C., Yeoman, R., Fanton, J., and Mitalipov, S. (2004) Use of assisted reproductive technologies in the propagation of rhesus macaque offspring. Biol Reprod. 71, 486–493.CrossRefPubMedGoogle Scholar
  16. 16.
    Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Northey, D. L., Schutzkus, V., and First, N. L. (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev Biol. 166, 729–739.CrossRefPubMedGoogle Scholar
  17. 17.
    Mitalipov, S. M., Nusser, K. D., and Wolf, D. P. (2001) Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol. Reprod. 65, 253–259.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Shoukhrat M. Mitalipov
    • 1
  • Don P. Wolf
    • 1
  1. 1.Oregon National Primate Research CenterBeaverton

Personalised recommendations