Preparation of Neural Progenitors from Bone Marrow and Umbilical Cord Blood

  • Shijie Song
  • Juan Sanchez-Ramos
Part of the Methods in Molecular Biology™ book series (MIMB, volume 438)


The bone marrow is clearly much more than a reservoir of stem cells that repopulates blood cell lineages throughout life. The marrow also contains nonhematopoietic stem cells, which are much more versatile than previously appreciated. These nonhematopoietic stem/progenitor cells are found in the bone marrow stromal cell (BMSC) population. BMSCs also are known as colony-forming unit fibroblasts and mesenchymal stem cells (MSCs). MSCs also can be generated from umbilical cord blood and other tissues. MSCs have been shown to express properties of neuroectodermal cells in vitro by many researchers and in vivo after transplantation into the brain and spinal cord. Many investigators have developed variations on the original method described 6 years ago for the preparation of neural progenitors from BMSCs. We bring up to date the materials and procedures used to prepare BMSCs from bone marrow and from human umbilical cord blood for the induction of neural progenitor cells and subsequent differentiation into neurons and glia.

Key Words

Bone marrow umbilical cord blood stem cell hematopoietic stem cell bone marrow stromal cell mesenchymal stem cell neural stem cell neural progenitor cell neuron glia differentiation 


  1. 1.
    Morse, W. R. (1938) Chinese medicine. Paul Hoeber, Inc., New York.Google Scholar
  2. 2.
    Song, S. and Sanchez-Ramos, J. (2003) Brain as the Sea of Marrow. Exp. Neurol. 184(1 Suppl.), 54–60.Google Scholar
  3. 3.
    Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.CrossRefPubMedGoogle Scholar
  5. 5.
    Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91, 1017–1026.PubMedGoogle Scholar
  6. 6.
    Fu, Y. S., Cheng, Y. C., Lin, M. Y., et al. (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24, 115–124.CrossRefPubMedGoogle Scholar
  7. 7.
    Tondreau, T., Lagneaux, L., Dejeneffe, M., et al. (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72, 319–326.CrossRefPubMedGoogle Scholar
  8. 8.
    Friedenstein, A. J., Gorskaja, J. F., and Kulagina, N. N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274.PubMedGoogle Scholar
  9. 9.
    Reyes, M. and Verfaillie, C. M. (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann. N Y Acad. Sci. 938, 231–235.CrossRefPubMedGoogle Scholar
  10. 10.
    Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J. G., and Prockop. D. J. (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20, 530–541.Google Scholar
  11. 11.
    Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C. M. (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904.CrossRefPubMedGoogle Scholar
  12. 12.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.CrossRefPubMedGoogle Scholar
  13. 13.
    D’Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A., and Schiller, P. C. (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell Sci. 117, 2971–2981.CrossRefPubMedGoogle Scholar
  14. 14.
    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F. L., et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256.CrossRefPubMedGoogle Scholar
  15. 15.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370.CrossRefPubMedGoogle Scholar
  16. 16.
    Woodbury, D., Reynolds, K., and Black, I. B. (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res. 69, 908–917.CrossRefPubMedGoogle Scholar
  17. 17.
    Black, I. and Woodbury, D. (2001) Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol. Dis. 27, 632–636.CrossRefPubMedGoogle Scholar
  18. 18.
    Kohyama, J., Abe, H., Shimazaki, T., et al. (2001) Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68, 235–244.CrossRefPubMedGoogle Scholar
  19. 19.
    Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J. (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282, 148–152.CrossRefPubMedGoogle Scholar
  20. 20.
    Jiang, Y., Henderson, D., Blackstad, M., Chen, A., Miller., R. F, and Verfaillie, C. M. (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl. Acad. Sci. USA 100(Suppl. 1), 11854–11860.CrossRefPubMedGoogle Scholar
  21. 21.
    Kabos, P., Ehtesham, M., Kabosova, A., Black, K. L., and Yu, J. S. (2002) Generation of neural progenitor cells from whole adult bone marrow. Exp. Neurol. 178, 288–293.CrossRefPubMedGoogle Scholar
  22. 22.
    Hermann, A., Liebau, S., Gastl, R., et al. (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J. Neurosci. Res. 83, 1502–1514.CrossRefPubMedGoogle Scholar
  23. 23.
    Hermann, A., Gastl, R., Liebau, S., et al. (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J. Cell Sci. 117, 4411–4422.CrossRefPubMedGoogle Scholar
  24. 24.
    Eglitis, M. A., Dawson, D., Park, K. W., and Mouradian, M. M. (1999) Targeting of marrow-derived astrocytes to the ischemic brain. Neuroreport 10, 1289–1292.CrossRefPubMedGoogle Scholar
  25. 25.
    Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10711–10716.CrossRefPubMedGoogle Scholar
  26. 26.
    Brazelton, T. R., Rossi, F. M. V., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.CrossRefPubMedGoogle Scholar
  27. 27.
    Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., Lu, M., and Rosenblum, M. (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11, 3001–3005.CrossRefPubMedGoogle Scholar
  28. 28.
    Mezey, E. and Chandross, K. J. (2000) Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 405, 297–302.CrossRefPubMedGoogle Scholar
  29. 29.
    Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G. D., and Crain, B. (2003) Transplanted bone marrow generates new neurons in human brains. Proc. Natl. Acad. Sci. USA 100, 1364–1369.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakano, K., Migita, M., Mochizuki, H., and Shimada, T. (2001) Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation 71, 1735–1740.CrossRefPubMedGoogle Scholar
  31. 31.
    Hofstetter, C. P., Schwarz, E. J., Hess, D., et al. (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99, 2199–2204.CrossRefPubMedGoogle Scholar
  32. 32.
    Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Bjorklund, A.(1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005.PubMedGoogle Scholar
  33. 33.
    Kaufman, L. M. and Barrett, J. N. (1983) Serum factor supporting long-term survival of rat central neurons in culture. Science 220, 1394–1396.CrossRefPubMedGoogle Scholar
  34. 34.
    Sanchez-Ramos, J. R., Michel, P., Weiner, W. J. and Hefti, F. (1988) Selective destruction of cultured dopaminergic neurons from embryonic rat mesencephalon: cytochemical and morphological evidence. J. Neurochem. 50, 1934–1944.CrossRefPubMedGoogle Scholar
  35. 35.
    Michel, P. P., Dandapani, B. K., Sanchez-Ramos, J., Efange, S., Pressman, B. C., and Hefti, F. (1989) Toxic effects of potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium on cultured rat dopaminergic neurons. J. Pharmacol. Exp. Ther. 248, 842–850.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shijie Song
    • 1
  • Juan Sanchez-Ramos
    • 1
  1. 1.Department of NeurologyUniversity of South FloridaTampa

Personalised recommendations