Advertisement

Analysis of the Extracellular Matrix and Secreted Vesicle Proteomes by Mass Spectrometry

Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 428)

Summary

The extracellular matrix (ECM) and secreted vesicles are unique structures outside of cells that carry out dynamic biological functions. ECM is created by most cell types and is responsible for the three-dimensional structure of the tissue or organ in which they are originated. Many cells also produce or secrete specialized vesicles into the ECM, which are thought to influence the extracellular environment. ECM is not s a physical structure to connect cells in a tissue or organ. The proteins in ECM and secreted vesicles are critical to cell function, differentiation, motility, and cell-to-cell interaction. Although a number of major structural proteins of ECM and secreted vesicles have long been known, an appreciation of the role of less-abundant non-collagenous proteins has just begun to emerge. This chapter outlines a series of methods used to isolate and enrich ECM constituents and secreted vesicles from bone-forming osteoblast cells, enabling comprehensive profiles of their proteomes to be obtained by mass spectrometry. These methods can be easily adapted to study ECM and secreted vesicles in other cell types, primary cell cultures derived from animal models, or tissue specimens.

Key Words

extracellular matrix matrix vesicle osteoblast proteomics mass spectrometry 

References

  1. 1.
    Holmbeck, K. and Szabova, L. (2006) Aspects of extracellular matrix remodeling in development and disease. Birth Defects Res C Embryo Today 78, 11–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Brooke, B. S., Karnik, S. K. and Li, D. Y. (2003) Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol 13, 51–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Tahinci, E. and Lee, E. (2004) The interface between cell and developmental biology. Curr Opin Genet Dev 14, 361–366.PubMedCrossRefGoogle Scholar
  4. 4.
    Harada, S. and Rodan, G. A. (2003) Control of osteoblast function and regulation of bone mass. Nature 423, 349–355.PubMedCrossRefGoogle Scholar
  5. 5.
    Beck, G. R., Jr. (2003) Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90, 234–243.PubMedCrossRefGoogle Scholar
  6. 6.
    Aubin, J. E. (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2, 81–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson, H. C. (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res, 266–280.Google Scholar
  8. 8.
    Anderson, H. C. (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5, 222–226.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson, H. C., Garimella, R. and Tague, S. E. (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10, 822–837 .PubMedCrossRefGoogle Scholar
  10. 10.
    Kirsch, T. (2005) Annexins – their role in cartilage mineralization. Front Biosci 10, 576–581.PubMedCrossRefGoogle Scholar
  11. 11.
    Hessle, L., Johnson, K. A., Anderson, H. C., Narisawa, S., Sali, A., Goding, J. W., Terkeltaub, R. and Millan, J. L. (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99, 9445–9449.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson, K. A., Hessle, L., Vaingankar, S., Wennberg, C., Mauro, S., Narisawa, S., Goding, J. W., Sano, K., Millan, J. L. and Terkeltaub, R. (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279, R1365–1377.PubMedGoogle Scholar
  13. 13.
    Morris, D. C., Masuhara, K., Takaoka, K., Ono, K. and Anderson, H. C. (1992) Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone. Bone Miner 19, 287–298.PubMedCrossRefGoogle Scholar
  14. 14.
    Baldini, V., Mastropasqua, M., Francucci, C. M. and D’Erasmo, E. (2005) Cardiovascular disease and osteoporosis. J Endocrinol Invest 28, 69–72.PubMedGoogle Scholar
  15. 15.
    Dao, H. H., Essalihi, R., Bouvet, C. and Moreau, P. (2005) Evolution and modulation of age-related medial elastocalcinosis: impact on large artery stiffness and isolated systolic hypertension. Cardiovasc Res 66, 307–317.PubMedCrossRefGoogle Scholar
  16. 16.
    Reynolds, J. L., Joannides, A. J., Skepper, J. N., McNair, R., Schurgers, L. J., Proudfoot, D., Jahnen-Dechent, W., Weissberg, P. L. and Shanahan, C. M. (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15, 2857–2867.PubMedCrossRefGoogle Scholar
  17. 17.
    Abedin, M., Tintut, Y. and Demer, L. L. (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24, 1161–1170.PubMedCrossRefGoogle Scholar
  18. 18.
    Tintut, Y. and Demer, L. L. (2001) Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol 12, 555–560.PubMedCrossRefGoogle Scholar
  19. 19.
    Stewart, D. A., Cooper, C. R. and Sikes, R. A. (2004) Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2, 2.PubMedCrossRefGoogle Scholar
  20. 20.
    Yin, J. J., Pollock, C. B. and Kelly, K. (2005) Mechanisms of cancer metastasis to the bone. Cell Res 15, 57–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Mundy, G. R. (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2, 584–593.PubMedCrossRefGoogle Scholar
  22. 22.
    Roodman, G. D. (2004) Mechanisms of bone metastasis. N Engl J Med 350, 1655–1664.PubMedCrossRefGoogle Scholar
  23. 23.
    Yates, J. R., III. (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33, 297–316.PubMedCrossRefGoogle Scholar
  24. 24.
    Yates, J. R., III, Gilchrist, A., Howell, K. E. and Bergeron, J. J. (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6, 702–714.PubMedCrossRefGoogle Scholar
  25. 25.
    Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science 312, 212–217.PubMedCrossRefGoogle Scholar
  26. 26.
    Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.PubMedCrossRefGoogle Scholar
  27. 27.
    Xiao, Z., Camalier, C. E., Nagashima, K., Chan, K. C., Lucas, D. A., de la Cruz, M. J., Gignac, M., Lockett, S., Issaq, H. J., Veenstra, T. D., Conrads, T. P. and Beck Jr, G. R. (2006) Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol, In press.Google Scholar
  28. 28.
    Sudo, H., Kodama, H. A., Amagai, Y., Yamamoto, S. and Kasai, S. (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96, 191–198.PubMedCrossRefGoogle Scholar
  29. 29.
    Choi, J. Y., Lee, B. H., Song, K. B., Park, R. W., Kim, I. S., Sohn, K. Y., Jo, J. S. and Ryoo, H. M. (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 61, 609–618.PubMedCrossRefGoogle Scholar
  30. 30.
    Quarles, L. D., Yohay, D. A., Lever, L. W., Caton, R. and Wenstrup, R. J. (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7, 683–692.PubMedCrossRefGoogle Scholar
  31. 31.
    Franceschi, R. T., Iyer, B. S. and Cui, Y. (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res 9, 843–854.PubMedCrossRefGoogle Scholar
  32. 32.
    Beck, G. R., Jr, Sullivan, E. C., Moran, E. and Zerler, B. (1998) Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem 68, 269–280.PubMedCrossRefGoogle Scholar
  33. 33.
    Beck, G. R., Jr, Zerler, B. and Moran, E. (2001) Gene array analysis of osteoblast differentiation. Cell Growth Differ 12, 61–83.PubMedGoogle Scholar
  34. 34.
    Johnson, K., Moffa, A., Chen, Y., Pritzker, K., Goding, J. and Terkeltaub, R. (1999) Matrix vesicle plasma cell membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res 14, 883–892.PubMedCrossRefGoogle Scholar
  35. 35.
    Ali, S. Y., Sajdera, S. W. and Anderson, H. C. (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67, 1513–1520.PubMedCrossRefGoogle Scholar
  36. 36.
    Dean, D. D., Schwartz, Z., Bonewald, L., Muniz, O. E., Morales, S., Gomez, R., Brooks, B. P., Qiao, M., Howell, D. S. and Boyan, B. D. (1994) Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of beta-glycerophosphate and ascorbic acid. Calcif Tissue Int 54, 399–408.PubMedCrossRefGoogle Scholar
  37. 37.
    Chan, K. C., Muschik, G. M. and Issaq, H. J. (2000) Solid-state UV laser-induced fluorescence detection in capillary electrophoresis. Electrophoresis 21, 2062–2066.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang , W., Xu, J. and Kirsch, T. (2005) Annexin V and terminal differentiation of growth plate chondrocytes. Exp Cell Res 305, 156–165.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, IncNational Cancer Institute at FrederickFrederickMD
  2. 2.Division of EndocrinologyMetabolism and Lipids Emory University, School of MedicineAtlantaGA
  3. 3.Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, IncNational Cancer Institute at FrederickFrederickMD
  4. 4.Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, IncNational Cancer Institute at FrederickFrederickMD

Personalised recommendations