Advertisement

Osteoporosis pp 111-124 | Cite as

Utility of the Ovariectomized Rat as a Model for Human Osteoporosis in Drug Discovery

  • Yogendra P. Kharode
  • Michael C. Sharp
  • Peter V.N. Bodine
Part of the Methods In Molecular Biology™ book series (MIMB, volume 455)

Abstract

Ovariectomy-induced osteopenia in the rat produces skeletal responses similar to that in a post-menopausal woman. In the ovariectomized (ovx) rat, high bone turnover, and subsequent bone loss, like in the human post-menopausal condition, can be prevented by estrogen replacement. Because of the striking resemblance of skeletal responses in humans and rats in the state of estrogen deficiency, the ovx rat is considered to be a gold standard model for evaluating drugs for prevention and reversal of osteoporosis. This chapter describes the procedure for performing ovariectomy on the rat and the utility of the ovx rat model we have utilized over the last two decades in our laboratory.

Keywords

Ovariectomy bone mineral density peripheral dual x-ray absorptiometry peripheral quantitative computed tomography micro-CT 

Notes

Acknowledgments

The authors wish to dedicate this article to our late director, Shunichi Harada, who devoted his professional life to osteoporosis research. We also thank Fred Bex and Barry Komm for their guidance, direction, and support of the Wyeth osteoporosis research group. Finally, they are grateful to many talented scientists whose excellent technical support over the last two decades have been instrumental in developing and implementing animal models and analytical methods in their laboratory: special thanks to Joseph Tamasi, James Morzolf, Michelle French, Stephani Smoluk, Andrea Scarcia, Vanessa Dell, Mellisa Wasco, Paula Green, Sally Selim, Colleen Millgan, and Jennifer Pirrello as well as the BioResources staff at Wyeth Research for their valuable assistance.

References

  1. 1.
    1. Consensus Development Conference. (1993) Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94, 646–650.CrossRefGoogle Scholar
  2. 2.
    2. Heaney, R. P., Recker, R. R., Saville, P. D. (1978) Menopausal changes in bone remodeling. J Lab Clin Med 92, 964–970.PubMedGoogle Scholar
  3. 3.
    3. Garnero, P., Sornayrendu, E., Chapau, M. C., et al. (1996) Increased bone turnover in late postmenopausal woman is a major determinant of osteoporosis. J Bone Miner Res 11, 337–349.CrossRefPubMedGoogle Scholar
  4. 4.
    4. Komm, B. S., Terpening, C. M., Benz, D. J., et al. (1988) Estrogen binding receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241, 81–84.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Ericksen, E. F., Colvard, D. S., Bergn N. J., et al. (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241, 84–86.CrossRefGoogle Scholar
  6. 6.
    6. Oursler, M., Osdoby, P., Pyfferon, J., et al. (1991) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88, 6613–6617.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Ernst, M., Heath, J. K., Rodan, G. A. (1989) Estradiol effects on proliferation, messanger ribonucleic acid for collagen and insulin-like growth factor-1, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125, 825–833.CrossRefPubMedGoogle Scholar
  8. 8.
    8. Yang, N. N., Bryant, H. U., Hardikar, S., et al. (1996) Estrogen and raloxifene stimulate transforming growth factor-beta-3 gene expression in rat bone: a potential mechanism for estrogenor raloxifene-mediated bone maintenance. Endocrinology 137, 2075–2084.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Rickard, D. J., Hofbaur, L. C., Bonde, S. K., et al. (1998) Bone morphogenic protein-6-production in human osteoblast-like cell lines: selective regulation by estrogen. J Clin Invest 101, 413–422.CrossRefPubMedGoogle Scholar
  10. 10.
    10. Girasolle, G., Jilka, R. L., Passeri, G., et al. (1992) Marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the anti-osteoporotic effects of estrogens. J Clin Invest 89, 883–891.CrossRefGoogle Scholar
  11. 11.
    11. Rogers, A., Estell, R. (1998) Effects of estrogen therapy of postmenopausal women on cytokines measured in peripheral blood. J Bone Miner Res 13, 1577–1586.CrossRefPubMedGoogle Scholar
  12. 12.
    12. Armour, C. E., Ralston, S. H. (1998) Estrogen upregulates endothelial constitutive nitric oxide synthase expression in human osteoblast-like cells. Endocrinology 139, 799–802.CrossRefPubMedGoogle Scholar
  13. 13.
    13. Arjandi, B. H., Sahil, M. A., Herbert, D. C., et al. (1993) Evidence for estrogen receptorlinked calcium transport in the intestine. Bone Miner 21, 63–74.CrossRefGoogle Scholar
  14. 14.
    14. Heaney, R. P., Recker, R. R., Saville, P. D. (1978) Menopausal changes in calcium balance performance. J Lab Clin Med 92, 953–963.PubMedGoogle Scholar
  15. 15.
    15. Recker, R. R., Saville, P. D., Heaney, R. P. (1977) Effects of estrogen and calcium carbonate on bone loss in postmenopausal women. Ann Int Med 87, 649–655.PubMedGoogle Scholar
  16. 15.
    15. Gallagher, J. C., Kable, W. T., Goldgar, D. (1991) Effects of progestin therapy on cortical and trabecular bone: comparison with estrogen. Am J Med 90, 171–178.PubMedGoogle Scholar
  17. 15.
    15. Vedi, S., Compston, J. E. (1996) The effect of long-term hormone replacement therapy on bone remodeling in postmenopausal women. Bone 19, 535–539.CrossRefPubMedGoogle Scholar
  18. 16.
    16. Lindsay, R., Cosman, F. (2006) Effects of estrogen intervention on the skeleton, in (Favus, M. J., ed.), Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism, 5th ed. The American Society for Bone and Mineral Research, Washington, DC.Google Scholar
  19. 17.
    17. Kalu, D. N., Liu, C. C., Salerno, E., et al. (1991) Skeletal response of ovariectomized rats to low and high doses of 17-beta estradiol. Bone Miner 14, 175–187.CrossRefPubMedGoogle Scholar
  20. 18.
    18. Plosker, G. L., Goa, K. L. (1994) Clodronate: a review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 47, 945–982.CrossRefPubMedGoogle Scholar
  21. 19.
    19. Plum, L. A., Fitzpatrick, L. A., Ma, X., et al. (2006) 2MD, a new anabolic agent for osteoporosis treatment. Osteoporosis Int 17, 704–715.CrossRefGoogle Scholar
  22. 20.
    20. Dempster, D. W., Cosman, F., Parisien, M., et al. (2006) Anabolic actions of parathyroid hormone on bone. Endocr Rev 14, 690–709.Google Scholar
  23. 21.
    21. Shen, V. , Dempster, D. W., Mellish, R. W. E., et al. (1992) Effects of combined and separate intermittent administration of low-dose human parathyroid hormone fragment (1–34) and 17β-estradiol on bone histomorphometry in ovariectomized rats with established osteopenia. Calcif Tiss Int 50, 214–220.CrossRefGoogle Scholar
  24. 22.
    22. Wronski, T. J., Yen, C. F., Scott, K. S. (1991) Estrogen and diphosphonate treatment provide long-term protection against osteopenia in ovariectomized rats. J Bone Miner Res 6, 387–394.CrossRefPubMedGoogle Scholar
  25. 23.
    23. Jee, W. S. S., Yao, W. (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskel Neuron Interact 1, 193–207.Google Scholar
  26. 24.
    24. Wronski, T. J., Lowery, P. L., Walsh, C. C., et al. (1985) Skeletal alterations in ovariectomized rats. Calcif Tissue Int 37, 324–328.CrossRefPubMedGoogle Scholar
  27. 25.
    25. Wronski, T. J., Walsh, C. C., Ignaszewski, L. A. (1986) Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7, 119–123.CrossRefPubMedGoogle Scholar
  28. 26.
    26. Wronski, T. J., Cintron. M., Dann, L. M. (1988) Temporal bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43, 179–183.CrossRefPubMedGoogle Scholar
  29. 27.
    27. Wronski, T. J., Dann, L. M., Scott, K. S., et al. (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45, 360–366.CrossRefPubMedGoogle Scholar
  30. 28.
    28. Turner, R. T., Vandersteenhoven, J. J., Bell, N. H. (1987) The effects of ovariectomy and 17βestradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2, 115–122.CrossRefPubMedGoogle Scholar
  31. 29.
    29. Hayward, M. A., Kharode, Y. P., Becci, M. M., et al. (1990) The effect of conjugated equine estrogen on ovariectomy-induced osteopenia in the rat. Agents Actions 31, 152–156.CrossRefPubMedGoogle Scholar
  32. 30.
    30. Kalu, D. N. (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15, 175–192.CrossRefPubMedGoogle Scholar
  33. 31.
    31. Gunness-Hey, M., Hock, J. M. (1984) Increased trabecular bone mass in rats treated with human synthetic parathyroid hormone. Metab Bone Dis Rel Res 5, 177–181.CrossRefGoogle Scholar
  34. 32.
    32. Hock, J. M., Fonesca, J., Gunness-Hey, M., et al. (1989) Comparison of the anabolic effects of synthetic parathyroid hormone-related protein (PTHrP) 1–34 and PTH 1–34 on bone in rats. Endocrinology 125, 2022–2027.CrossRefPubMedGoogle Scholar
  35. 33.
    33. Seedor, J. G., Quartuccio, H. A., Thompson, D. D. (1991) The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 6, 339–346.CrossRefPubMedGoogle Scholar
  36. 34.
    34. Muller, K., Wisenberg, I., Jaeggi, K., et al. (1998) Effects of the bisphosphonate Zoledronate on bone loss in the ovariectomized and in the adjuvant arthritic rat. Arzneim-Forsch Drug Res 48, 81–86.Google Scholar
  37. 35.
    35. Marie, P. J., Hott, M., Modrowski, D., et al. (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogendeficient rats. J Bone Miner Res 8, 607–615.CrossRefPubMedGoogle Scholar
  38. 36.
    36. Black, L. J., Sato, M., Rowley, E. R., et al. (1994) Raloxifene (LY139481 HCl) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93, 63–69.CrossRefPubMedGoogle Scholar
  39. 37.
    37. Ke, H. Z., Chen, H. K., Simmon, H. A., et al. (1997) Comparative effects of droloxifene, tamoxifen, and estrogen on bone, serum cholesterol, and uterine histology in the ovariectomized rat model. Bone 20, 31–39.CrossRefPubMedGoogle Scholar
  40. 38.
    38. Komm, B. S., Kharode, Y. P., Bodine, P. V. N., et al. (2005) Bazedoxifene acetate: a selective estrogen receptor modulator with improved selectivity.Endocrinology 146, 3999–4008.CrossRefPubMedGoogle Scholar
  41. 39.
    39. Uchiyama, Y. , Higuchi, Y. , Takeda, S., et al. (2002) ED-71, a Vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis. Bone 30, 582–588.CrossRefPubMedGoogle Scholar
  42. 40.
    40. Kimmel, D. B., Bozzato, R. P., Kronis, K. A., et al. (1993) The effect of recombinant human (1–84) or synthetic human (1–34) parathyroid hormone on the skeleton of adult osteopenic ovariectomized rats. Endocrinology 132, 1577–1584.CrossRefPubMedGoogle Scholar
  43. 41.
    41. Murrills, R. J., Matteo, J. J., Samuel, R. L., et al. (2004) In vitro and in vivo activities of C-terminally truncated PTH peptides reveal a disconnect between cAMP signaling functional activity. Bone 35, 1263–1272.CrossRefPubMedGoogle Scholar
  44. 42.
    42. Meng, X. W., Liang, X. G., Birchman, R., et al. (1996) Temporal expression of the anabolic action of PTH in cancellous bone of ovariectomized rats. J Bone Miner Res 11, 421–429.CrossRefPubMedGoogle Scholar
  45. 43.
    43. Ke, H. Z., Jee, W. S. S., Zeng, Q. Q., et al. (1993) Prostaglandin E2 increased rat cortical mass when administered immediately following ovariectomy. Bone Miner 21, 189–201.CrossRefPubMedGoogle Scholar
  46. 44.
    Guidelines for Preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis. (1994) Division of Metabolism and Endocrine Drug Products: Food and Drug Administration.Google Scholar
  47. 45.
    45. Kharode, Y. P., Marzolf, J. T., Bodine, P. V. N., et al. (2002) Maintenance of therapeutic effects of hPTH in ovariectomized rats with established osteopenia: evaluation of bazedoxifene, raloxifene and ethinyl estradiol. J Bone Miner Res 17, S209.Google Scholar
  48. 46.
    46. Kharode, Y. P., Green, P. D., Marzolf, J. T., et al. (2003) Comparison of the effects of bazedoxifene, raloxifene, lasofoxifene, and risedronate co-treatment on hPTH-induced reversal of established osteopenia in ovariectomized rats. J Bone Miner Res 18, S273.Google Scholar
  49. 47.
    47. Kimmel, D. B., Wronski, T. J. (1990) Nondestructive measurement of bone mineral in femurs from ovariectomized rats. Calcif Tiss Int 46, 101–110.CrossRefGoogle Scholar
  50. 48.
    48. Frost, H. M. (1983) Bone histomorphometry: analysis of trabecular bone dynamics, in (Recker, R. R., ed.), Bone Histomorphometry: Techniques and Interpretations. CRC Press, Boca Raton, FL.Google Scholar
  51. 49.
    49. Reinhold, E. (2003) Bone-Labeling Techniques in (An, Y. H., Martin, K. L. eds.) Handbook of Histology Methods for Bone and Cartilage. Humana Press, Totowa, NJ.Google Scholar
  52. 50.
    50. Parfitt, A. M., Drezner, M. K., Glorieux, F. H., et al. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2, 595–610.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yogendra P. Kharode
    • 1
  • Michael C. Sharp
    • 1
  • Peter V.N. Bodine
    • 1
  1. 1.Osteoporosis Research, Women's Health and Musculoskeletal BiologyWyeth ResearchCollegevillePA

Personalised recommendations