Osteoporosis pp 293-303 | Cite as

Fourier Transform-Infrared Microspectroscopy and Microscopic Imaging

  • Samuel Gourion-Arsiquaud
  • Paul A. West
  • Adele L. Boskey
Part of the Methods In Molecular Biology™ book series (MIMB, volume 455)

Abstract

For age- and sex-matched subjects, osteoporotic bone is more fragile than healthy bone. Vibrational infrared spectroscopy and in particular infrared microspectroscopic imaging is a useful tool for investigating and characterizing changes associated with metabolic bone diseases including osteoporosis in biopsied tissues. Strength-related measures such as bone mineral content/composition as well as spectroscopically determined bone quality—related measures such as mineral crystallinity, carbonate substitution, and collagen cross-linking consequently differ between osteoporotic patients and normal subjects. Validated IR parameters specific to the mineral and matrix components of bone have been defined and can now be used to quantify anatomical/spatial variations and the effect of new therapies on osteoporotic bone.

Keywords

FT-IR microspectroscopy bone quality mineralization collagen crosslink mineral crystallinity 

References

  1. 1.
    1. Paschalis, E. P., Betts, F., DiCarlo, E., et al (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61, 487–492.CrossRefPubMedGoogle Scholar
  2. 2.
    2. Mendelsohn, R., Paschalis, E. P., Sherman, P. J., et al. (2000) IR microscopic imaging of pathological states and fracture healing of bone. Appln Spectrosc 54, 1183–1191.CrossRefGoogle Scholar
  3. 3.
    3. Boskey, A. L., Mendelsohn, R. (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10, 031102–031105.CrossRefPubMedGoogle Scholar
  4. 4.
    4. Faibish, D., Gomes, A., Boivin, G., et al. (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36, 6–10.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Ou-Yang, H., Paschalis, E. P., Mayo, W. E., et al (2001) Infrared microscopic imaging of bone∶ spatial distribution of CO3(2−). J Bone Miner Res 16, 893–900.CrossRefPubMedGoogle Scholar
  6. 6.
    6. Mayer, I., Schneider, S., Sydney-Zax, M., et al. (1990) Thermal decomposition of developing enamel. Calcif Tissue Int 46, 254–257.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Paschalis, E. P., DiCarlo, E., Betts, F., et al (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59, 480–487.PubMedGoogle Scholar
  8. 8.
    8. Gadaleta, S. J., Paschalis, E. P., Betts, F., et al. (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite∶ new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58, 9–16.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Pleshko, N., Boskey, A. L., Mendelsohn, R. (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60, 786–793.CrossRefPubMedGoogle Scholar
  10. 10.
    10. Knott, L., Bailey, A. J. (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22, 181–187.CrossRefPubMedGoogle Scholar
  11. 11.
    11. Paschalis, E. P., Verdelis, K., Doty, S. B., et al. (2001) Spectroscopic characterization of collagen cross-links in bone. Bone Miner Res 16, 1821–1828.CrossRefGoogle Scholar
  12. 12.
    12. Faibish, D., Ott, S. M., Boskey, A. L. (2006) Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443, 28–38.CrossRefPubMedGoogle Scholar
  13. 13.
    13. Schenk, R. K, Olah, A. J., Herrmann, W. (1984) Preparation of calcified tissues for light microscopy, in (Dickson GR, ed.), Methods of Calcified Tissue Preparation, vol. 1. Elsevier Science Publishers Amsterdam.Google Scholar
  14. 14.
    14. Erben, R. G. (1997) Embedding of bone samples in methylmethacrylate∶ an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 45, 307–314.PubMedGoogle Scholar
  15. 15.
    15. Spurr, A.R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.CrossRefPubMedGoogle Scholar
  16. 16.
    16. Romeo, A., Diem, M. (2005) Correction of dispersive line shape artifact observed in diffuse reflection infrared spectroscopy and absorption/reflection (transfection) infrared microspectroscopy. Vib Spectrosc 38, 129–132.CrossRefGoogle Scholar
  17. 17.
    17. Aparicio, S., Doty, S. B., Camacho, N. P., et al. (2002) Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcif Tissue Int 5, 422–429CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Samuel Gourion-Arsiquaud
    • 1
  • Paul A. West
    • 1
  • Adele L. Boskey
    • 2
  1. 1.Mineralized Tissue ResearchHospital for Special SurgeryNew YorkUSA
  2. 2.Mineralized Tissue Research, Hospital for Special SurgeryWeill Medical College and Cornell UniversityNew YorkUSA

Personalised recommendations