Advertisement

Biochemical Approaches for Characterizing RNA–Protein Complexes in Preparation for High Resolution Structure Analysis

  • Raúl C. Gomila
  • Lee Gehrke
Part of the Methods in Molecular Biology™ book series (MIMB, volume 451)

Abstract

RNA–protein interactions control viral RNA replication, transcription, translation, and particle assembly. Progress toward understanding the functional significance of RNA–protein complexes in the viral life cycle is hindered by the lack of high resolution structural information. Challenges to acquiring structural data include RNA's inherent instability and conformational plasticity, coupled with the comparatively high cost of generating large quantities of RNA for biophysical experiments. The potential for successful structure determination is increased by conducting biochemical experiments that outline interacting domains and identify key residues. These approaches are aimed at defining and characterizing RNA and protein substrates that are suitable for high resolution structural analysis.

Keywords

Structure RNA–protein interaction Virus RNA Peptide RNA structure Crystallography 

Notes

Acknowledgments

Patricia Ansel-McKinney contributed in generating the data presented in Figs. 3 and 4. This work was supported by the National Institutes of Health (GM42504) and The Ellison Medical Foundation (ID-SS-0147-01). NIH predoctoral fellowship was given to RCG (GM64985).

References

  1. 1.
    1. Tao, Y., Farsetta, D. L., Nibert, M. L., and Harrison, S. C. (2002) Cell 111, 733–45.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Liemann, S., Chandran, K., Baker, T. S., Nibert, M. L., and Harrison, S. C. (2002) Cell 108, 283–95.PubMedCrossRefGoogle Scholar
  3. 3.
    3. Olland, A. M., Jane-Valbuena, J., Schiff, L. A., Nibert, M. L., and Harrison, S. C. (2001) Embo J 20, 979–89.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Reinisch, K. M., Nibert, M. L., and Harrison, S. C. (2000) Nature 404, 960–7.PubMedCrossRefGoogle Scholar
  5. 5.
    5. Ke, A., and Doudna, J. A. (2004) Methods 34, 408–14.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Boyce, M., Scott, F., Guogas, L. M., and Gehrke, L. (2006) J Mol Recognit 19, 68–78.PubMedCrossRefGoogle Scholar
  7. 7.
    7. Petrillo, J. E., Rocheleau, G., Kelley-Clarke, B., and Gehrke, L. (2005) J Virol 79, 5743–51.PubMedCrossRefGoogle Scholar
  8. 8.
    8. Guogas, L., Laforest, S., and Gehrke, L. (2005) J Virol 79, 5752–61.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Rocheleau, G., Petrillo, J., Guogas, L., and Gehrke, L. (2004) J Virol 78, 8036–46.PubMedCrossRefGoogle Scholar
  10. 10.
    10. Laforest, S. M., and Gehrke, L. (2004) Rna 10, 48–58.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Ansel-McKinney, P., and Gehrke, L. (1998) J Mol Biol 278, 767–85.PubMedCrossRefGoogle Scholar
  12. 12.
    12. Houser-Scott, F., Ansel-McKinney, P. A., Cai, J. M., and Gehrke, L. (1997) J Virol 71, 2310–19.PubMedGoogle Scholar
  13. 13.
    13. Ansel-McKinney, P., Scott, S. W., Swanson, M., Ge, X., and Gehrke, L. (1996) EMBO J 15, 5077–84.PubMedGoogle Scholar
  14. 14.
    14. Houser-Scott, F., Baer, M. L., Liem, K. F., Jr., Cai, J. M., and Gehrke, L. (1994) J Virol 68, 2194–205.PubMedGoogle Scholar
  15. 15.
    15. Baer, M., Houser, F., Loesch-Fries, L. S., and Gehrke, L. (1994) EMBO J. 13, 727–35.PubMedGoogle Scholar
  16. 16.
    16. Guogas, L. M., Filman, D. J., Hogle, J. M., and Gehrke, L. (2004) Science 306, 2108–11.PubMedCrossRefGoogle Scholar
  17. 17.
    17. Blackwell, J. L., and Brinton, M. A. (1995) J Virol 69, 5650–8.PubMedGoogle Scholar
  18. 18.
    18. Copeland, P. R., and Driscoll, D. M. (1999) J Biol Chem 274, 25447–54.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Rouault, T. A., Hentze, M. W., Haile, D. J., Harford, J. B., and Klausner, R. D. (1989) Proc Natl Acad Sci USA 86, 5768–72.PubMedCrossRefGoogle Scholar
  20. 20.
    20. Frankel, A. D. (1994) in “RNA–protein interactions” (Nagai, K., Mattaj, I. W., and Glover, D. M., Eds.), RL Press, New York, pp. 221–47.Google Scholar
  21. 21.
    21. Carey, J., and Uhlenbeck, O. C. (1983) Biochemistry 22, 2610–5.PubMedCrossRefGoogle Scholar
  22. 22.
    22. Carey, J. (1991) Methods Enzymol 208, 103–17.PubMedCrossRefGoogle Scholar
  23. 23.
    23. Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D., and Frankel, A. D. (1991) Science 252, 1167–71.CrossRefGoogle Scholar
  24. 24.
    24. Paoletti, A. C., Shubsda, M. F., Hudson, B. S., and Borer, P. N. (2002) Biochemistry 41, 15423–8.PubMedCrossRefGoogle Scholar
  25. 25.
    25. Silver, S. C., and Hunt, S. W., 3rd (1993) Mol Biol Rep 17, 155–65.PubMedCrossRefGoogle Scholar
  26. 26.
    26. Lane, D., Prentki, P., and Chandler, M. (1992) Microbiol Rev 56, 509–28.PubMedGoogle Scholar
  27. 27.
    Ansel-McKinney, P. (1996), Ph.D. Thesis, Harvard University, Cambridge, MA, pp. 249.Google Scholar
  28. 28.
    28. Ansel-McKinney, P., and Gehrke, L. (1997) in “Analysis of mRNA Formation and Function” (Richter, J. D., Ed.), Academic Press, New York, pp. 285–303.CrossRefGoogle Scholar
  29. 29.
    29. Knapp, G. (1989) Methods Enzymol 180, 192–212.PubMedCrossRefGoogle Scholar
  30. 30.
    30. Swanson, M., Ansel-McKinney, P., Houser-Scott, F., Yusibov, V., Loesch-Fries, L. S., and Gehrke, L. (1998) J Virol 72, 3227–34.PubMedGoogle Scholar
  31. 31.
    31. Quigley, G. J., Gehrke, L., Roth, D. A., and Auron, P. E. (1984) Nucl Acids Res 12, 347–66.PubMedCrossRefGoogle Scholar
  32. 32.
    32. Batey, R. T., and Williamson, J. R. (1996) J Mol Biol 261, 536–49.PubMedCrossRefGoogle Scholar
  33. 33.
    33. Batey, R. T., and Williamson, J. R. (1996) J Mol Biol 261, 550–67.PubMedCrossRefGoogle Scholar
  34. 34.
    34. Puglisi, J. D., Chen, L., Blanchard, S., and Frankel, A. D. (1995) Science 270, 1200–03.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Price, S. R., Ito, N., Oubridge, C., Avis, J. M., and Nagai, K. (1995) J Mol Biol 249, 398–408.PubMedCrossRefGoogle Scholar
  36. 36.
    36. Oubridge, C., Ito, N., Teo, C. H., Fearnley, I., and Nagai, K. (1995) J Mol Biol 249, 409–23.PubMedCrossRefGoogle Scholar
  37. 37.
    37. Chen, L., and Frankel, A. D. (1995) Proc Natl Acad Sci USA 92, 5077–81.PubMedCrossRefGoogle Scholar
  38. 38.
    38. Tan, R. Y., and Frankel, A. D. (1994) Biochemistry 33, 14579–85.PubMedCrossRefGoogle Scholar
  39. 39.
    39. Battiste, J. L., Tan, R. Y., Frankel, A. D., and Williamson, J. R. (1994) Biochemistry 33, 2741–47.PubMedCrossRefGoogle Scholar
  40. 40.
    40. Tan, R., Chen, L., Buettner, J. A., Hudson, D., and Frankel, A. D. (1993) Cell 73, 1031–40.PubMedCrossRefGoogle Scholar
  41. 41.
    41. Puglisi, J. D., Tan, R., Calnan, B. J., Frankel, A. D., and Williamson, J. R. (1992) Science 257, 76–80.PubMedCrossRefGoogle Scholar
  42. 42.
    42. Zuidema, D., Bierhuizen, M. F. A., and Jaspars, E. M. J. (1983) Virology 129, 255–60.PubMedCrossRefGoogle Scholar
  43. 43.
    43. Carey, J., Cameron, V., de Haseth, P. L., and Uhlenbeck, O. C. (1983) Biochemistry 22, 2601–10.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Raúl C. Gomila
    • 1
  • Lee Gehrke
    • 1
  1. 1.HST DivisionHST DivisionCambridgeUSA

Personalised recommendations