Advertisement

Implementing Phytoremediation of Petroleum Hydrocarbons

  • Chris D. Collins
Part of the Methods in Biotechnology book series (MIBT, volume 23)

Abstract

An evaluation of the current “state of the art” for the phytoremediation of total petroleum hydrocarbons (TPH) is given, which will allow for well-informed decisions to be made when the technology is being applied to this contamination problem. Information is provided on phytotoxicity, plant selection, and management as well as useful supplementary practical data sources. A management decision tree is presented to aid in the successful application of phytoremediation to TPH-contaminated sites. Finally, deficiencies in the current knowledge are identified, which need to be addressed to improve the effectiveness of phytoremediation to this problem.

Key Words

Total petroleum hydrocarbons plant selection field application decision tree 

References

  1. 1.
    World Petroleum Consumption.Energy:http://www.eia.doe.gov/emeu/aer/pdf/pages/sec11_21.pdf:Table 11.10.Last Accessed 05/01/04.
  2. 2.
    API (2003) U.S. Oil and Natural Gas Industry’s Environmental Expenditures 1992-2001. American Petroleum Institute, Washington DC, pp. 1–17.Google Scholar
  3. 3.
    Susarla, S., Medina, V. F., and McCutcheon, S. C. (2002) Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng. 18, 647–658.CrossRefGoogle Scholar
  4. 4.
    Hong, M. S., Farmayan, W. F., Dortch, I. J., Chiang, C. Y., McMillan, S. K., and Schnoor, J. L. (2001) Phytoremediation of MTBE from a groundwater plume Environ. Sci. Tech. 35, 1231–1239.CrossRefGoogle Scholar
  5. 5.
    Robinson, S. L., Novak, J. T., Widdowson, M. A., Crosswell, S. B., and Fetterolf, G. J. (2003) Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in an aged creosote-contaminated surface soil. J. Environ. Eng.-A 129, 232–240.CrossRefGoogle Scholar
  6. 6.
    Dupont, R. R. (1993) Fundamentals of bioventing applied to fuel contaminated sites. Environ. Prog. 12, 45–53.CrossRefGoogle Scholar
  7. 7.
    Hildebrandt, W. W. and Wilson, S. B. (1991) On-site bioremediation systems reduce crude-oil contamination. J. Petr. Technol 43, 18–22.Google Scholar
  8. 8.
    Zimmerman, P. K. and Robert, J. D. (1991) Oil-based drill cuttings treated by landfarming.Oil Gas J. 89, 81–84.Google Scholar
  9. 9.
    Nedunuri, K. V., Govindaraju, R. S., Banks, M. K., Schwab, A. P., and Chens, Z. (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J. Environ. Eng.-A 126, 483–490.CrossRefGoogle Scholar
  10. 10.
    Hutchinson, S. L., Banks, M. K., and Schwab, A. P. (2001) Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Qual. 30, 395–403.CrossRefGoogle Scholar
  11. 11.
    Adam, G., and Duncan, H. J. (1999) Effect of diesel fuel on growth of selected plant species. Environ. Geochem. Health 21, 353–357.CrossRefGoogle Scholar
  12. 12.
    Wiltse, C. C., Rooney, W. L., Chen, Z., Schwab, A. P., and Banks, M. K. (1998) Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes. J. Environ. Qual. 27, 169–173.CrossRefGoogle Scholar
  13. 13.
    PhytoPet© A Database of Plants that Play a Role in the Phytoremediation of Petroleum Hydrocarbons.http://http://www.phytopet.usask.ca/mainpg.php.Last accessed 05/01/04.
  14. 14.
    Lindau, C. W. and Delaune, R. D. (2000) Vegetative response of Sagittaria lancifolia to burning of applied crude oil. Water, Air, Soil Pollut. 121, 161–172.CrossRefGoogle Scholar
  15. 15.
    Pezeshki, S. R., Jugsujinda, A., and Delaune, R. D. (1998) Responses of selected US Gulf coast marsh macrophyte species to oiling and commercial cleaners. Water, Air, Soil Pollut. 107, 185–195.CrossRefGoogle Scholar
  16. 16.
    Donnetti, C. (2003) Plant microbe interactions for the clean up of contaminated land. MSc Thesis, Imperial College, London, UK.Google Scholar
  17. 17.
    Adam, G. and Duncan, H. (2002) Influence of diesel fuel on seed germination. Environ. Pollut. 120, 363–370.CrossRefGoogle Scholar
  18. 18.
    Harvey, B. S. (2002) Screening plant species for phytoremediation potential. MSc Thesis, Imperial College, London, UK.Google Scholar
  19. 19.
    Lin, Q. X., Mendelssohn, I. A., Carney, K., Bryner, N. P., and Walton, W. D. (2002)The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora. Mar. Pollut. Bull. 44, 897–902.CrossRefGoogle Scholar
  20. 20.
    Brown, J. L. and Nadeau, R. J. (2002) Restoration of petroleum contaminated sites using phased bioremediation. Biorem. J. 6, 315–319.CrossRefGoogle Scholar
  21. 21.
    Dowty, R. A., Shaffer, G. P., Hester, M. W., Childers, G. W., Campo, F. M., and Greene, M. C. (2001) Phytoremediation of small-scale oil spills in fresh marsh environments: a mesocosm simulation. Mar. Environ. Res. 52, 195–211.CrossRefGoogle Scholar
  22. 22.
    ITRC.Phytoremediation Online Decision Tree Document. http://www.itrcweb.org/user/webphyto/envdept/phyto/wwwphyto/index.htm.Last accessed 05/01/06.
  23. 23.
    Environmental Protection Agency (1999) Phytoremediation Resource Guide, EPA 542-B-99-003.Google Scholar
  24. 24.
    Environmental Protection Agency (2000) Introduction to Phytoremediation, EPA/600/R-99/107.Google Scholar
  25. 25.
    Environmental Protection Agency (2001) Brownfields Technology Primer: Selecting and Using Phytoremediation: EPA 542-R-01-006.Google Scholar
  26. 26.
    Kujat, J. D. (1999) A comparison of popular remedial technologies for petroleum containated soils from leaking underground storage tanks. E. Green J. 11, 1–13.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Chris D. Collins

There are no affiliations available

Personalised recommendations