Ex Vivo Megakaryocyte Expansion and Platelet Production from Human Cord Blood Stem Cells

  • Valérie Cortin
  • Nicolas Pineault
  • Alain Garnier
Part of the Methods in Molecular Biology book series (MIMB, volume 482)


The identification and cloning of thrombopoietin was certainly a defining moment for the study of megakaryopoiesis and thrombopoiesis ex vivo. This and other progresses made in the development of culture processes for hematopoietic stem cells have paved the way for ongoing clinical trials and, in the future, for the potential therapeutic use of ex vivo produced blood substitutes such as platelets. This chapter describes a 14-day culture protocol for the production of megakaryocytes (MK) and platelets from human cord blood stem cells. The CD34+ cells are grown in a serum-free medium supplemented with a newly developed cytokine cocktail optimizing MK differentiation, expansion, and maturation. A detailed methodology for flow cytometry analysis of the cells and platelets is also presented together with supporting figures. A brief review on megakaryocytic differentiation and ex vivo MK cultures is first presented.

Key words

Megakaryocytes platelets hematopoietic stem cells cord blood flow cytometry ex vivo cell culture culture medium optimization stem cells expansion cytokines culture medium design culture medium optimization statistical design of experiments 


  1. 1.
    Wognum, A. W., Eaves, A. C., and Thomas, T. E. (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34, 461–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Bartley, T. D., Bogenberger, J., Hunt, P., Li, Y. S., Lu, H. S., Martin, F., Chang, M. S., Samal, B., Nichol, J. L., Swift, S., and et al. (1994) Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77, 1117–24.CrossRefPubMedGoogle Scholar
  3. 3.
    de Sauvage, F. J., Hass, P. E., Spencer, S. D., Malloy, B. E., Gurney, A. L., Spencer, S. A., Darbonne, W. C., Henzel, W. J., Wong, S. C., Kuang, W. J., and et al. (1994) Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Norol, F., Vitrat, N., Cramer, E., Guichard, J., Burstein, S. A., Vainchenker, W., and Debili, N. (1998) Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 91, 830–43.PubMedGoogle Scholar
  5. 5.
    Schipper, L. F., Brand, A., Reniers, N. C., Melief, C. J., Willemze, R., and Fibbe, W. E. (1998) Effects of thrombopoietin on the proliferation and differentiation of primitive and mature haemopoietic progenitor cells in cord blood. Br J Haematol 101, 425–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Mattia, G., Vulcano, F., Milazzo, L., Barca, A., Macioce, G., Giampaolo, A., and Hassan, H. J. (2002) Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 99, 888–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Pang, L., Weiss, M. J., and Poncz, M. (2005) Megakaryocyte biology and related disorders. J Clin Invest 115, 3332–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Debili, N., Coulombel, L., Croisille, L., Katz, A., Guichard, J., Breton-Gorius, J., and Vainchenker, W. (1996) Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 88, 1284–96.PubMedGoogle Scholar
  9. 9.
    Italiano, J. E., Jr., Lecine, P., Shivdasani, R. A., and Hartwig, J. H. (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147, 1299–312.CrossRefPubMedGoogle Scholar
  10. 10.
    Kikuchi, J., Furukawa, Y., Iwase, S., Terui, Y., Nakamura, M., Kitagawa, S., Kitagawa, M., Komatsu, N., and Miura, Y. (1997) Polyploidization and functional maturation are two distinct processes during megakaryocytic differentiation: involvement of cyclin-dependent kinase inhibitor p21 in polyploidization. Blood 89, 3980–90.PubMedGoogle Scholar
  11. 11.
    Zimmet, J., and Ravid, K. (2000) Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp Hematol 28, 3–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Schulze, H., Korpal, M., Hurov, J., Kim, S. W., Zhang, J., Cantley, L. C., Graf, T., and Shivdasani, R. A. (2006) Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood 107, 3868–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Cortin, V., Garnier, A., Pineault, N., Lemieux, R., Boyer, L., and Proulx, C. (2005) Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Exp Hematol 33, 1182–91.CrossRefPubMedGoogle Scholar
  14. 14.
    De Bruyn, C., Delforge, A., Martiat, P., and Bron, D. (2005) Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem Cells Dev 14, 415–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Bruno, S., Gunetti, M., Gammaitoni, L., Dane, A., Cavalloni, G., Sanavio, F., Fagioli, F., Aglietta, M., and Piacibello, W. (2003) In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution. Haematologica 88, 379–87.PubMedGoogle Scholar
  16. 16.
    Williams, J. L., Pipia, G. G., Datta, N. S., and Long, M. W. (1998) Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood 91, 4118–26.PubMedGoogle Scholar
  17. 17.
    Ungerer, M., Peluso, M., Gillitzer, A., Massberg, S., Heinzmann, U., Schulz, C., Munch, G., and Gawaz, M. (2004) Generation of Functional Culture-Derived Platelets from CD34+ Progenitor Cells to Study Transgenes in the Platelet Environment. Circ Res.Google Scholar
  18. 18.
    Shaw, P. H., Gilligan, D., Wang, X. M., Thall, P. F., and Corey, S. J. (2003) Ex vivo expansion of megakaryocyte precursors from umbilical cord blood CD34 cells in a closed liquid culture system. Biol Blood Marrow Transplant 9, 151–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Dolzhanskiy, A., Basch, R. S., and Karpatkin, S. (1997) The development of human megakaryocytes: III. Development of mature megakaryocytes from highly purified committed progenitors in synthetic culture media and inhibition of thrombopoietin-induced polyploidization by interleukin-3. Blood 89, 426–34.PubMedGoogle Scholar
  20. 20.
    Tajika, K., Ikebuchi, K., Inokuchi, K., Hasegawa, S., Dan, K., Sekiguchi, S., Nakahata, T., and Asano, S. (1998) IL-6 and SCF exert different effects on megakaryocyte maturation. Br J Haematol 100, 105–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Proulx, C., Boyer, L., Hurnanen, D. R., and Lemieux, R. (2003) Preferential ex vivo expansion of megakaryocytes from human cord blood CD34+-enriched cells in the presence of thrombopoietin and limiting amounts of stem cell factor and Flt-3 ligand. J Hematother Stem Cell Res 12, 179–88.CrossRefPubMedGoogle Scholar
  22. 22.
    Fox, N. E., and Kaushansky, K. (2005) Engagement of integrin alpha4beta1 enhances thrombopoietin-induced megakaryopoiesis. Exp Hematol 33, 94–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Avecilla, S. T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D. K., Dias, S., Zhang, F., Hartman, T. E., Hackett, N. R., Crystal, R. G., Witte, L., Hicklin, D. J., Bohlen, P., Eaton, D., Lyden, D., de Sauvage, F., and Rafii, S. (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Bertolini, F., Battaglia, M., Pedrazzoli, P., Da Prada, G. A., Lanza, A., Soligo, D., Caneva, L., Sarina, B., Murphy, S., Thomas, T., and della Cuna, G. R. (1997) Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood 89, 2679–88.PubMedGoogle Scholar
  25. 25.
    Proulx, C., Dupuis, N., St-Amour, I., Boyer, L., and Lemieux, R. (2004) Increased megakaryopoiesis in cultures of CD34-enriched cord blood cells maintained at 39 degrees C. Biotechnol Bioeng 88, 675–80.CrossRefPubMedGoogle Scholar
  26. 26.
    Harrison, P., Briggs, C., and Machin, S. J. (2004) in “Platelets and Megakaryocytes” (Jonathan M. Gibbins, M. P. M.-S., Ed.), Vol. 272, pp. 29–46, Human Press, New jersey.Google Scholar
  27. 27.
    Darzynkiewick, Z., and Huang, X. (2004) in “Current protocols in immunology” (Collingan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, W., Eds.), pp. 5.7.1–5.7.18, John Wiley & Sons, New York.Google Scholar
  28. 28.
    Debili, N., Louache, F., and Vainchenker, W. (2004) in “Platelets and Megakaryocytes” (Jonathan M. Gibbins, M. P. M.-S., Ed.), Vol. 272, pp. 293–308, Human Press, New jersey.Google Scholar
  29. 29.
    Pineault, N., Boucher, J.-F., Cayer, M.-P., Palmqvist, L., Boyer, L., Lemieux, R., and Proulx, C. (2008) Stem Cells Dev 17, 483–94.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Valérie Cortin
    • 1
  • Nicolas Pineault
    • 1
    • 2
  • Alain Garnier
    • 3
  1. 1.Département de Recherche et DéveloppementHéma-QuébecQuébec CityCanada
  2. 2.Department of Biochemistry and MicrobiologyUniversité LavalCanada
  3. 3.Department of Chemical Engineering, and Centre de Recherche sur la Fonction, la Structure et l’Ingénierie des ProtéinesUniversité LavalQuébec CityCanada

Personalised recommendations